{"title":"锁定铷的 420 纳米转变的功率稳定的 3 瓦蓝色激光器","authors":"Jia Zhang, Xiaolei Guan, Xun Gao, Zhiyang Wang, Xiaomin Qin, Zijie Liu, Hangbo Shi, Jianxiang Miao, Tiantian Shi, Jingbiao Chen","doi":"10.1103/physrevapplied.22.034045","DOIUrl":null,"url":null,"abstract":"Using modulation transfer spectroscopy, we achieve the frequency stabilization of a high-power 3-W blue laser at the wavelength of 420 nm to the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Rb</mi></math> <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>6</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></math> transition. The in-loop frequency stability of this laser is <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>/</mo><msqrt><mi>τ</mi></msqrt></math>, reaching <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1.7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></math> at 100 s and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></math> at 1000 s. An external power feedback loop is established using an acousto-optic modulator, employing the zeroth-order diffracted light for power stabilization, achieving an in-loop power stability of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1.0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math> at 1 s. Moreover, the continuous mode-hop free interval of this high-power laser can simultaneously cover the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>6</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></math> transitions of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>85</mn></msup><mtext>Rb</mtext></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>87</mn></msup><mtext>Rb</mtext></math>, with successful locking achieved for both isotopes, providing a comprehensive analysis of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Rb</mi></math> atomic transitions in the blue spectral region. As an application, this 3-W 420-nm laser with excellent power and frequency stabilities is used as a repumping source for diffuse laser cooling of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>87</mn></msup><mtext>Rb</mtext></math> atoms, realizing a one-meter-long cold-atom cloud. This paves the way for using blue-light cooling to realize a cold-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Rb</mi></math>-atom active optical clock. In addition, the ultrahigh-stability 420-nm laser also finds applications in various fields such as the Rydberg atom experiment, Bose-Einstein condensation, ultranarrow-bandwidth Faraday atomic filter, and so on.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"11 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium\",\"authors\":\"Jia Zhang, Xiaolei Guan, Xun Gao, Zhiyang Wang, Xiaomin Qin, Zijie Liu, Hangbo Shi, Jianxiang Miao, Tiantian Shi, Jingbiao Chen\",\"doi\":\"10.1103/physrevapplied.22.034045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using modulation transfer spectroscopy, we achieve the frequency stabilization of a high-power 3-W blue laser at the wavelength of 420 nm to the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Rb</mi></math> <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math>–<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>6</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></math> transition. The in-loop frequency stability of this laser is <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>/</mo><msqrt><mi>τ</mi></msqrt></math>, reaching <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1.7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></math> at 100 s and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></math> at 1000 s. An external power feedback loop is established using an acousto-optic modulator, employing the zeroth-order diffracted light for power stabilization, achieving an in-loop power stability of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1.0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math> at 1 s. Moreover, the continuous mode-hop free interval of this high-power laser can simultaneously cover the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math>–<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>6</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></math> transitions of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi></mi><mn>85</mn></msup><mtext>Rb</mtext></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi></mi><mn>87</mn></msup><mtext>Rb</mtext></math>, with successful locking achieved for both isotopes, providing a comprehensive analysis of the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Rb</mi></math> atomic transitions in the blue spectral region. As an application, this 3-W 420-nm laser with excellent power and frequency stabilities is used as a repumping source for diffuse laser cooling of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi></mi><mn>87</mn></msup><mtext>Rb</mtext></math> atoms, realizing a one-meter-long cold-atom cloud. This paves the way for using blue-light cooling to realize a cold-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Rb</mi></math>-atom active optical clock. In addition, the ultrahigh-stability 420-nm laser also finds applications in various fields such as the Rydberg atom experiment, Bose-Einstein condensation, ultranarrow-bandwidth Faraday atomic filter, and so on.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034045\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034045","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium
Using modulation transfer spectroscopy, we achieve the frequency stabilization of a high-power 3-W blue laser at the wavelength of 420 nm to the – transition. The in-loop frequency stability of this laser is , reaching at 100 s and at 1000 s. An external power feedback loop is established using an acousto-optic modulator, employing the zeroth-order diffracted light for power stabilization, achieving an in-loop power stability of at 1 s. Moreover, the continuous mode-hop free interval of this high-power laser can simultaneously cover the – transitions of and , with successful locking achieved for both isotopes, providing a comprehensive analysis of the atomic transitions in the blue spectral region. As an application, this 3-W 420-nm laser with excellent power and frequency stabilities is used as a repumping source for diffuse laser cooling of atoms, realizing a one-meter-long cold-atom cloud. This paves the way for using blue-light cooling to realize a cold--atom active optical clock. In addition, the ultrahigh-stability 420-nm laser also finds applications in various fields such as the Rydberg atom experiment, Bose-Einstein condensation, ultranarrow-bandwidth Faraday atomic filter, and so on.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.