Lucas M Martinho, Luca De Marchi and Alan C Kubrusly
{"title":"频率可调电磁声学换能器","authors":"Lucas M Martinho, Luca De Marchi and Alan C Kubrusly","doi":"10.1088/1361-665x/ad78cf","DOIUrl":null,"url":null,"abstract":"Electromagnetic acoustic transducers (EMATs) are convenient for non-destructive evaluation of plate-like structures since they can generate, without the need for contact with the medium under test, different types of ultrasonic guided waves. Guided-wave EMATs usually generate waves omnidirectionally or in a principal propagation direction. Beam steering is desirable in several applications, such as in inspections of large-area structures. This is usually achieved with several independently controlled elements forming a phased array. Alternatively, mono-element transducers with directional-dependent spectral content can steer the generated wave beam by altering the frequency of the excitation signal. A piezoelectric transducer with this characteristic, namely a frequency steerable acoustic transducer, was previously proposed. Its design was addressed in the wavenumber domain, leading to unconventional transducer shapes, but still reproducible with a piezoelectric patch, albeit unfeasible to implement as an EMAT. Here, we propose a new kind of EMAT, namely, frequency steerable EMAT (FSEMAT), whose design is addressed in the spatial domain in order to ensure its physical realization with a coil-magnet arrangement whilst still effectively presenting steering capability. The novel EMAT was designed to generate the A0 Lamb wave mode in a frequency range from approximately 100 to 600 kHz. The FSEMAT was fabricated and experimentally evaluated in an aluminium plate at different frequencies within the designed frequency range, where each frequency corresponded to a specific propagating direction with high directivity, assessed by half-power beam widths of approximately 10 degrees. Furthermore, its theoretical directivity was computed by means of a wavenumber spectrum-based model, and showed good agreement with experimental results. The new transducer allows great flexibility effectively providing beam steering with a single EMAT.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"196 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A frequency steerable electromagnetic acoustic transducer\",\"authors\":\"Lucas M Martinho, Luca De Marchi and Alan C Kubrusly\",\"doi\":\"10.1088/1361-665x/ad78cf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic acoustic transducers (EMATs) are convenient for non-destructive evaluation of plate-like structures since they can generate, without the need for contact with the medium under test, different types of ultrasonic guided waves. Guided-wave EMATs usually generate waves omnidirectionally or in a principal propagation direction. Beam steering is desirable in several applications, such as in inspections of large-area structures. This is usually achieved with several independently controlled elements forming a phased array. Alternatively, mono-element transducers with directional-dependent spectral content can steer the generated wave beam by altering the frequency of the excitation signal. A piezoelectric transducer with this characteristic, namely a frequency steerable acoustic transducer, was previously proposed. Its design was addressed in the wavenumber domain, leading to unconventional transducer shapes, but still reproducible with a piezoelectric patch, albeit unfeasible to implement as an EMAT. Here, we propose a new kind of EMAT, namely, frequency steerable EMAT (FSEMAT), whose design is addressed in the spatial domain in order to ensure its physical realization with a coil-magnet arrangement whilst still effectively presenting steering capability. The novel EMAT was designed to generate the A0 Lamb wave mode in a frequency range from approximately 100 to 600 kHz. The FSEMAT was fabricated and experimentally evaluated in an aluminium plate at different frequencies within the designed frequency range, where each frequency corresponded to a specific propagating direction with high directivity, assessed by half-power beam widths of approximately 10 degrees. Furthermore, its theoretical directivity was computed by means of a wavenumber spectrum-based model, and showed good agreement with experimental results. The new transducer allows great flexibility effectively providing beam steering with a single EMAT.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad78cf\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad78cf","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A frequency steerable electromagnetic acoustic transducer
Electromagnetic acoustic transducers (EMATs) are convenient for non-destructive evaluation of plate-like structures since they can generate, without the need for contact with the medium under test, different types of ultrasonic guided waves. Guided-wave EMATs usually generate waves omnidirectionally or in a principal propagation direction. Beam steering is desirable in several applications, such as in inspections of large-area structures. This is usually achieved with several independently controlled elements forming a phased array. Alternatively, mono-element transducers with directional-dependent spectral content can steer the generated wave beam by altering the frequency of the excitation signal. A piezoelectric transducer with this characteristic, namely a frequency steerable acoustic transducer, was previously proposed. Its design was addressed in the wavenumber domain, leading to unconventional transducer shapes, but still reproducible with a piezoelectric patch, albeit unfeasible to implement as an EMAT. Here, we propose a new kind of EMAT, namely, frequency steerable EMAT (FSEMAT), whose design is addressed in the spatial domain in order to ensure its physical realization with a coil-magnet arrangement whilst still effectively presenting steering capability. The novel EMAT was designed to generate the A0 Lamb wave mode in a frequency range from approximately 100 to 600 kHz. The FSEMAT was fabricated and experimentally evaluated in an aluminium plate at different frequencies within the designed frequency range, where each frequency corresponded to a specific propagating direction with high directivity, assessed by half-power beam widths of approximately 10 degrees. Furthermore, its theoretical directivity was computed by means of a wavenumber spectrum-based model, and showed good agreement with experimental results. The new transducer allows great flexibility effectively providing beam steering with a single EMAT.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.