Haisu Liao, Tsunho Wu, Gang Gao, Xinyu Wu and Fei Gao
{"title":"用于人体膝部能量收集器的非均匀压电弯曲梁的形状优化","authors":"Haisu Liao, Tsunho Wu, Gang Gao, Xinyu Wu and Fei Gao","doi":"10.1088/1361-665x/ad78ce","DOIUrl":null,"url":null,"abstract":"Scavenging energy from the human body to provide a sustainable source for electronic devices has gained significant attention. Recently, scientists have focused on harnessing biomechanical energy from human motion. This study was dedicated to developing and optimizing a non-uniform piezoelectric bending beam-based human knee energy harvester. The bimorph non-uniform piezoelectric bending beam consisted of a non-uniform carbon fiber substrate and piezoelectric macro fiber composites. Compared to the uniform piezoelectric bending beam, the non-uniform piezoelectric beam can optimize the shape to improve the average strain, thus improving the energy harvesting efficiency. In this study, eight shape functions, including ellipse, sin, tanh, exponential function, parabola, trigonometric line, and bell curves, were investigated and optimized. The bell curve bending beam was selected and fabricated due to its good performance. Then, a benchmark platform was developed to test the deflection curve and reaction force when the nonuniform bending beam was compressed. Finally, to validate the design, experimental testing on three subjects was conducted when they were equipped with the harvester and walked on a treadmill. Testing results indicated that the non-uniform bending beam-based energy harvester can improve the energy harvesting efficiency by 28.57% compared to the uniform beam-based energy harvester. The output power can reach 18.94 mW when walking at 7.0 km h−1.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"41 2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester\",\"authors\":\"Haisu Liao, Tsunho Wu, Gang Gao, Xinyu Wu and Fei Gao\",\"doi\":\"10.1088/1361-665x/ad78ce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scavenging energy from the human body to provide a sustainable source for electronic devices has gained significant attention. Recently, scientists have focused on harnessing biomechanical energy from human motion. This study was dedicated to developing and optimizing a non-uniform piezoelectric bending beam-based human knee energy harvester. The bimorph non-uniform piezoelectric bending beam consisted of a non-uniform carbon fiber substrate and piezoelectric macro fiber composites. Compared to the uniform piezoelectric bending beam, the non-uniform piezoelectric beam can optimize the shape to improve the average strain, thus improving the energy harvesting efficiency. In this study, eight shape functions, including ellipse, sin, tanh, exponential function, parabola, trigonometric line, and bell curves, were investigated and optimized. The bell curve bending beam was selected and fabricated due to its good performance. Then, a benchmark platform was developed to test the deflection curve and reaction force when the nonuniform bending beam was compressed. Finally, to validate the design, experimental testing on three subjects was conducted when they were equipped with the harvester and walked on a treadmill. Testing results indicated that the non-uniform bending beam-based energy harvester can improve the energy harvesting efficiency by 28.57% compared to the uniform beam-based energy harvester. The output power can reach 18.94 mW when walking at 7.0 km h−1.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"41 2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad78ce\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad78ce","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
从人体中收集能量,为电子设备提供可持续的能量来源,已经引起了人们的极大关注。最近,科学家们开始关注从人体运动中利用生物机械能。本研究致力于开发和优化基于非均匀压电弯曲梁的人体膝关节能量收集器。双态非均匀压电弯曲梁由非均匀碳纤维基板和压电宏纤维复合材料组成。与均匀压电弯曲梁相比,非均匀压电梁可以通过优化形状来提高平均应变,从而提高能量收集效率。本研究对椭圆、sin、tanh、指数函数、抛物线、三角线和钟形曲线等八种形状函数进行了研究和优化。由于钟形曲线弯曲梁性能良好,因此选择并制作了钟形曲线弯曲梁。然后,开发了一个基准平台来测试非均匀弯曲梁受压时的挠度曲线和反作用力。最后,为了验证设计的有效性,我们对三名受试者进行了实验测试,测试时他们都配备了收割机并在跑步机上行走。测试结果表明,与基于均匀梁的能量收集器相比,基于非均匀弯曲梁的能量收集器可将能量收集效率提高 28.57%。当以 7.0 km h-1 的速度行走时,输出功率可达 18.94 mW。
Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester
Scavenging energy from the human body to provide a sustainable source for electronic devices has gained significant attention. Recently, scientists have focused on harnessing biomechanical energy from human motion. This study was dedicated to developing and optimizing a non-uniform piezoelectric bending beam-based human knee energy harvester. The bimorph non-uniform piezoelectric bending beam consisted of a non-uniform carbon fiber substrate and piezoelectric macro fiber composites. Compared to the uniform piezoelectric bending beam, the non-uniform piezoelectric beam can optimize the shape to improve the average strain, thus improving the energy harvesting efficiency. In this study, eight shape functions, including ellipse, sin, tanh, exponential function, parabola, trigonometric line, and bell curves, were investigated and optimized. The bell curve bending beam was selected and fabricated due to its good performance. Then, a benchmark platform was developed to test the deflection curve and reaction force when the nonuniform bending beam was compressed. Finally, to validate the design, experimental testing on three subjects was conducted when they were equipped with the harvester and walked on a treadmill. Testing results indicated that the non-uniform bending beam-based energy harvester can improve the energy harvesting efficiency by 28.57% compared to the uniform beam-based energy harvester. The output power can reach 18.94 mW when walking at 7.0 km h−1.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.