揭示用于太阳能水分离的 Sb2(S,Se)3 光阴极中 CuI 层和 Se 含量的双重影响

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-09-14 DOI:10.1002/solr.202400528
Hao Zhe Chun, Stener Lie, Mahmoud G. Ahmed, Lydia H. Wong
{"title":"揭示用于太阳能水分离的 Sb2(S,Se)3 光阴极中 CuI 层和 Se 含量的双重影响","authors":"Hao Zhe Chun, Stener Lie, Mahmoud G. Ahmed, Lydia H. Wong","doi":"10.1002/solr.202400528","DOIUrl":null,"url":null,"abstract":"Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> is a promising photocathode for photoelectrochemical (PEC) conversion of solar energy to hydrogen due to its excellent optoelectronic properties, stability, and low toxicity. For such applications, a p–i–n device architecture is favorable for efficient charge separation, with the p‐type layer improving hole extraction while the n‐type layer facilitates electron injection into the electrolyte for hydrogen evolution reaction. However, the lack of suitable p‐type layers for depositing a uniform layer of Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> photocathode constrains the device architectures for PEC water splitting. In this work, various p‐type materials (e.g., NiO, CuS, and CuI) are investigated. Photocathodes fabricated on CuI demonstrate superior performance due to improved hole extraction and uniform growth of Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> absorber layer. The Se/S ratio is adjusted to further fine‐tune the photocathode's absorption, influencing the efficiency of charge carriers’ injection and separation. The overall PEC performance reaches the maximum value when Se/S = 20%, achieving up to 4.2 mA cm<jats:sup>−2</jats:sup> with stable photocurrents sustained for 120 min under standard illumination conditions, achieving the highest‐reported photocurrent among S‐rich‐solution‐processed Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> photocathodes. In this work, new avenues are opened for the design of p–i–n Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> PEC devices.","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"80 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Dual Impact of CuI Layer and Se Content in Sb2(S, Se)3 Photocathodes for Solar Water Splitting\",\"authors\":\"Hao Zhe Chun, Stener Lie, Mahmoud G. Ahmed, Lydia H. Wong\",\"doi\":\"10.1002/solr.202400528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> is a promising photocathode for photoelectrochemical (PEC) conversion of solar energy to hydrogen due to its excellent optoelectronic properties, stability, and low toxicity. For such applications, a p–i–n device architecture is favorable for efficient charge separation, with the p‐type layer improving hole extraction while the n‐type layer facilitates electron injection into the electrolyte for hydrogen evolution reaction. However, the lack of suitable p‐type layers for depositing a uniform layer of Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> photocathode constrains the device architectures for PEC water splitting. In this work, various p‐type materials (e.g., NiO, CuS, and CuI) are investigated. Photocathodes fabricated on CuI demonstrate superior performance due to improved hole extraction and uniform growth of Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> absorber layer. The Se/S ratio is adjusted to further fine‐tune the photocathode's absorption, influencing the efficiency of charge carriers’ injection and separation. The overall PEC performance reaches the maximum value when Se/S = 20%, achieving up to 4.2 mA cm<jats:sup>−2</jats:sup> with stable photocurrents sustained for 120 min under standard illumination conditions, achieving the highest‐reported photocurrent among S‐rich‐solution‐processed Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> photocathodes. In this work, new avenues are opened for the design of p–i–n Sb<jats:sub>2</jats:sub>(S, Se)<jats:sub>3</jats:sub> PEC devices.\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/solr.202400528\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/solr.202400528","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

Sb2(S,Se)3具有优异的光电特性、稳定性和低毒性,是一种很有前途的光电阴极,可用于将太阳能转化为氢气。在此类应用中,p-i-n 器件结构有利于实现高效的电荷分离,其中 p 型层可改善空穴萃取,而 n 型层可促进电子注入电解质以进行氢进化反应。然而,由于缺乏合适的 p 型层来沉积均匀的 Sb2(S,Se)3 光阴极层,限制了 PEC 水分离的器件结构。本研究对各种 p 型材料(如 NiO、CuS 和 CuI)进行了研究。由于改进了空穴萃取和 Sb2(S,Se)3 吸收层的均匀生长,在 CuI 上制造的光电阴极表现出卓越的性能。调整 Se/S 比例可进一步微调光电阴极的吸收,从而影响电荷载流子的注入和分离效率。当 Se/S = 20% 时,PEC 的整体性能达到最大值,在标准照明条件下可达到 4.2 mA cm-2,光电流可稳定维持 120 分钟,在富含 S 的溶液处理 Sb2(S,Se)3 光电阴极中达到了最高的光电流。这项工作为设计 pi-n Sb2(S,Se)3 PEC 器件开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Dual Impact of CuI Layer and Se Content in Sb2(S, Se)3 Photocathodes for Solar Water Splitting

Unveiling the Dual Impact of CuI Layer and Se Content in Sb2(S, Se)3 Photocathodes for Solar Water Splitting
Sb2(S, Se)3 is a promising photocathode for photoelectrochemical (PEC) conversion of solar energy to hydrogen due to its excellent optoelectronic properties, stability, and low toxicity. For such applications, a p–i–n device architecture is favorable for efficient charge separation, with the p‐type layer improving hole extraction while the n‐type layer facilitates electron injection into the electrolyte for hydrogen evolution reaction. However, the lack of suitable p‐type layers for depositing a uniform layer of Sb2(S, Se)3 photocathode constrains the device architectures for PEC water splitting. In this work, various p‐type materials (e.g., NiO, CuS, and CuI) are investigated. Photocathodes fabricated on CuI demonstrate superior performance due to improved hole extraction and uniform growth of Sb2(S, Se)3 absorber layer. The Se/S ratio is adjusted to further fine‐tune the photocathode's absorption, influencing the efficiency of charge carriers’ injection and separation. The overall PEC performance reaches the maximum value when Se/S = 20%, achieving up to 4.2 mA cm−2 with stable photocurrents sustained for 120 min under standard illumination conditions, achieving the highest‐reported photocurrent among S‐rich‐solution‐processed Sb2(S, Se)3 photocathodes. In this work, new avenues are opened for the design of p–i–n Sb2(S, Se)3 PEC devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信