利用稀疏采样透射矩阵进行深层折射率断层成像的双向硅内清除方法。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Osamu Yasuhiko,Kozo Takeuchi
{"title":"利用稀疏采样透射矩阵进行深层折射率断层成像的双向硅内清除方法。","authors":"Osamu Yasuhiko,Kozo Takeuchi","doi":"10.1364/boe.524859","DOIUrl":null,"url":null,"abstract":"Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"5 1","pages":"5296-5313"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional in-silico clearing approach for deep refractive-index tomography using a sparsely sampled transmission matrix.\",\"authors\":\"Osamu Yasuhiko,Kozo Takeuchi\",\"doi\":\"10.1364/boe.524859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"5 1\",\"pages\":\"5296-5313\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.524859\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.524859","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光学衍射断层成像(ODT)通过绘制生物标本的三维折射率(RI)分布图,实现了生物标本的无标记容积成像。然而,由于空间不均匀的 RI 分布会引起多重散射,因此成像深度受到限制。在这项研究中,我们引入了一种新型的 ODT 技术,名为双向实验室内清零 RI 层析成像。该方法包含正向和反向硅内清除。对于反向硅内清除,我们将 ODT 重构框架与传输矩阵方法相结合,从而在无需修改传统 ODT 设置的情况下,从照明侧实现 RI 重构和波反向传播。此外,该框架还采用了稀疏采样的传输矩阵,大大减少了所需的测量次数和计算费用。利用这项技术,我们成功地对一个厚度为 263 µm 的球体进行了成像,相当于 11.4 个散射平均自由路径。这种方法成功地应用于各种生物样本,包括肝脏和结肠球体,显示了不同形态样本的一致成像性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional in-silico clearing approach for deep refractive-index tomography using a sparsely sampled transmission matrix.
Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信