基于散射的肛门鳞状上皮内病变光片显微镜图像的自动分析。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Yongjun Kim,Jingwei Zhao,Brooke Liang,Momoka Sugimura,Kenneth Marcelino,Rafael Romero,Ameer Nessaee,Carmella Ocaya,Koeun Lim,Denise Roe,Michelle J Khan,Eric J Yang,Dongkyun Kang
{"title":"基于散射的肛门鳞状上皮内病变光片显微镜图像的自动分析。","authors":"Yongjun Kim,Jingwei Zhao,Brooke Liang,Momoka Sugimura,Kenneth Marcelino,Rafael Romero,Ameer Nessaee,Carmella Ocaya,Koeun Lim,Denise Roe,Michelle J Khan,Eric J Yang,Dongkyun Kang","doi":"10.1364/boe.531700","DOIUrl":null,"url":null,"abstract":"We developed an algorithm for automatically analyzing scattering-based light sheet microscopy (sLSM) images of anal squamous intraepithelial lesions. We developed a method for automatically segmenting sLSM images for nuclei and calculating seven features: nuclear intensity, intensity slope as a function of depth, nuclear-to-nuclear distance, nuclear-to-cytoplasm ratio, cell density, nuclear area, and proportion of pixels corresponding to nuclei. 187 images from 80 anal biopsies were used for feature analysis and classifier development. The automated nuclear segmentation method provided reliable performance with the precision of 0.97 and recall of 0.91 when compared with the manual segmentation. Among the seven features, six showed statistically significant differences between high-grade squamous intraepithelial lesion (HSIL) and non-HSIL (non-dysplastic or low-grade squamous intraepithelial lesion, LSIL). A classifier using linear support vector machine (SVM) achieved promising performance in diagnosing HSIL versus non-HSIL: sensitivity of 90%, specificity of 70%, and area under the curve (AUC) of 0.89 for per-image diagnosis, and sensitivity of 90%, specificity of 80%, and AUC of 0.92 for per-biopsy diagnosis.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"14 1","pages":"5547-5559"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated analysis of scattering-based light sheet microscopy images of anal squamous intraepithelial lesions.\",\"authors\":\"Yongjun Kim,Jingwei Zhao,Brooke Liang,Momoka Sugimura,Kenneth Marcelino,Rafael Romero,Ameer Nessaee,Carmella Ocaya,Koeun Lim,Denise Roe,Michelle J Khan,Eric J Yang,Dongkyun Kang\",\"doi\":\"10.1364/boe.531700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed an algorithm for automatically analyzing scattering-based light sheet microscopy (sLSM) images of anal squamous intraepithelial lesions. We developed a method for automatically segmenting sLSM images for nuclei and calculating seven features: nuclear intensity, intensity slope as a function of depth, nuclear-to-nuclear distance, nuclear-to-cytoplasm ratio, cell density, nuclear area, and proportion of pixels corresponding to nuclei. 187 images from 80 anal biopsies were used for feature analysis and classifier development. The automated nuclear segmentation method provided reliable performance with the precision of 0.97 and recall of 0.91 when compared with the manual segmentation. Among the seven features, six showed statistically significant differences between high-grade squamous intraepithelial lesion (HSIL) and non-HSIL (non-dysplastic or low-grade squamous intraepithelial lesion, LSIL). A classifier using linear support vector machine (SVM) achieved promising performance in diagnosing HSIL versus non-HSIL: sensitivity of 90%, specificity of 70%, and area under the curve (AUC) of 0.89 for per-image diagnosis, and sensitivity of 90%, specificity of 80%, and AUC of 0.92 for per-biopsy diagnosis.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"14 1\",\"pages\":\"5547-5559\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.531700\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.531700","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种算法,用于自动分析肛门鳞状上皮内病变的散射光片显微镜(sLSM)图像。我们开发了一种方法,用于自动分割 sLSM 图像中的细胞核并计算以下七种特征:核强度、强度斜率与深度的函数关系、核与核之间的距离、核与细胞质的比率、细胞密度、核面积以及与细胞核相对应的像素比例。来自 80 个肛门活检组织的 187 张图像被用于特征分析和分类器开发。与人工分割相比,自动核分割方法具有可靠的性能,精确度为 0.97,召回率为 0.91。在七个特征中,有六个特征显示高级别鳞状上皮内病变(HSIL)与非高级别鳞状上皮内病变(非增生性或低级别鳞状上皮内病变,LSIL)之间存在统计学意义上的显著差异。使用线性支持向量机(SVM)的分类器在诊断 HSIL 与非 HSIL 方面取得了可喜的成绩:每张图像诊断的灵敏度为 90%,特异性为 70%,曲线下面积(AUC)为 0.89;每次活检诊断的灵敏度为 90%,特异性为 80%,曲线下面积(AUC)为 0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated analysis of scattering-based light sheet microscopy images of anal squamous intraepithelial lesions.
We developed an algorithm for automatically analyzing scattering-based light sheet microscopy (sLSM) images of anal squamous intraepithelial lesions. We developed a method for automatically segmenting sLSM images for nuclei and calculating seven features: nuclear intensity, intensity slope as a function of depth, nuclear-to-nuclear distance, nuclear-to-cytoplasm ratio, cell density, nuclear area, and proportion of pixels corresponding to nuclei. 187 images from 80 anal biopsies were used for feature analysis and classifier development. The automated nuclear segmentation method provided reliable performance with the precision of 0.97 and recall of 0.91 when compared with the manual segmentation. Among the seven features, six showed statistically significant differences between high-grade squamous intraepithelial lesion (HSIL) and non-HSIL (non-dysplastic or low-grade squamous intraepithelial lesion, LSIL). A classifier using linear support vector machine (SVM) achieved promising performance in diagnosing HSIL versus non-HSIL: sensitivity of 90%, specificity of 70%, and area under the curve (AUC) of 0.89 for per-image diagnosis, and sensitivity of 90%, specificity of 80%, and AUC of 0.92 for per-biopsy diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信