Dongjie Fan, Lushan Liu, Bella Yuen, Lu Sun, Yuliang Fu, Yan Liu, Rui Liao, Yanli Qu, Chuanpeng Liu, Qiming Zhou
{"title":"RpoB 蛋白中的额外 L451G452N453 可抑制大肠杆菌在 37 度下因 DnaK/J 和触发因子耗竭而导致的合成致死率","authors":"Dongjie Fan, Lushan Liu, Bella Yuen, Lu Sun, Yuliang Fu, Yan Liu, Rui Liao, Yanli Qu, Chuanpeng Liu, Qiming Zhou","doi":"10.1002/jobm.202400253","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Escherichia coli</i> depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered <i>E. coli</i> depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C. Comparative analysis of fatty acid profiles of Z625 and Z629 revealed absence of numerous saturated fatty acids in Z625 as compared to the wild-type <i>E. coli</i> BW25113. In addition, increased unsaturated fatty acids were present in Z625, whereas the fatty acids profile of Z629 closely resembled that of BW25113. Whole genome sequencing revealed a 9-bp insertion in <i>rpoB</i> of Z625. Combined structural analysis of simulated RpoB protein bearing the amino acid sequence L451G452N453 insertion and susceptibility analysis to rifampicin suggested that the insertion did not disturb the individual RpoB structure as beta subunit of RNA polymerase. Comparative transcriptomic analysis of Z625 and Z629 suggested that this insertion impacted transcription of the overall RNA polymerase in Z625, leading to potential repression of some genes whose overexpression was toxic to <i>E. coli</i>. Additionally, Z625 exhibited distinctive metabolic adaptations, likely contributing to its survival at 37°C. In summary, our study elucidated one LGN insertion in <i>rpoB</i> that impacts transcriptional regulation in <i>E. coli</i>, thereby explaining the survival of <i>E. coli</i> depletion of trigger factor and DnaK/J at 37°C, and these founding suggested that some simple mutations in critical genes like <i>rpoB</i> might play an important role in driving adaptive evolution.</p></div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Additional L451G452N453 in the RpoB Protein Suppressed the Synthetic Lethality in Escherichia coli at 37 Degrees Caused by Depletion of DnaK/J and Trigger Factor\",\"authors\":\"Dongjie Fan, Lushan Liu, Bella Yuen, Lu Sun, Yuliang Fu, Yan Liu, Rui Liao, Yanli Qu, Chuanpeng Liu, Qiming Zhou\",\"doi\":\"10.1002/jobm.202400253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Escherichia coli</i> depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered <i>E. coli</i> depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C. Comparative analysis of fatty acid profiles of Z625 and Z629 revealed absence of numerous saturated fatty acids in Z625 as compared to the wild-type <i>E. coli</i> BW25113. In addition, increased unsaturated fatty acids were present in Z625, whereas the fatty acids profile of Z629 closely resembled that of BW25113. Whole genome sequencing revealed a 9-bp insertion in <i>rpoB</i> of Z625. Combined structural analysis of simulated RpoB protein bearing the amino acid sequence L451G452N453 insertion and susceptibility analysis to rifampicin suggested that the insertion did not disturb the individual RpoB structure as beta subunit of RNA polymerase. Comparative transcriptomic analysis of Z625 and Z629 suggested that this insertion impacted transcription of the overall RNA polymerase in Z625, leading to potential repression of some genes whose overexpression was toxic to <i>E. coli</i>. Additionally, Z625 exhibited distinctive metabolic adaptations, likely contributing to its survival at 37°C. In summary, our study elucidated one LGN insertion in <i>rpoB</i> that impacts transcriptional regulation in <i>E. coli</i>, thereby explaining the survival of <i>E. coli</i> depletion of trigger factor and DnaK/J at 37°C, and these founding suggested that some simple mutations in critical genes like <i>rpoB</i> might play an important role in driving adaptive evolution.</p></div>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\"64 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400253\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400253","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
An Additional L451G452N453 in the RpoB Protein Suppressed the Synthetic Lethality in Escherichia coli at 37 Degrees Caused by Depletion of DnaK/J and Trigger Factor
Escherichia coli depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered E. coli depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C. Comparative analysis of fatty acid profiles of Z625 and Z629 revealed absence of numerous saturated fatty acids in Z625 as compared to the wild-type E. coli BW25113. In addition, increased unsaturated fatty acids were present in Z625, whereas the fatty acids profile of Z629 closely resembled that of BW25113. Whole genome sequencing revealed a 9-bp insertion in rpoB of Z625. Combined structural analysis of simulated RpoB protein bearing the amino acid sequence L451G452N453 insertion and susceptibility analysis to rifampicin suggested that the insertion did not disturb the individual RpoB structure as beta subunit of RNA polymerase. Comparative transcriptomic analysis of Z625 and Z629 suggested that this insertion impacted transcription of the overall RNA polymerase in Z625, leading to potential repression of some genes whose overexpression was toxic to E. coli. Additionally, Z625 exhibited distinctive metabolic adaptations, likely contributing to its survival at 37°C. In summary, our study elucidated one LGN insertion in rpoB that impacts transcriptional regulation in E. coli, thereby explaining the survival of E. coli depletion of trigger factor and DnaK/J at 37°C, and these founding suggested that some simple mutations in critical genes like rpoB might play an important role in driving adaptive evolution.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).