{"title":"丝网印刷银电极和碳电极上掺氮氧化锌 pH 传感性能的比较分析","authors":"Alisha Mary Manoj, Leema Rose Viannie","doi":"10.1007/s10008-024-06078-z","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comparative study of the electrochemical pH sensing characteristics of N-ZnO on a carbon screen-printed electrode (N-ZnO/C) and a silver screen-printed electrode (N-ZnO/Ag). The surface-morphological properties of the film were evaluated using scanning electron microscopy. Electrochemical evaluation was carried out in the presence of common salts present in physiological fluids like NaCl and KCl. Cyclic voltammetry (CV) and chronoamperometry (CA) were carried out to evaluate the response characteristics of the solution under different pHs. Electrochemical impedance spectroscopy (EIS) was carried out to determine the interfacial parameters ruling the pH sensing mechanism for different electrode configurations. The studies revealed that the carbon-based electrodes exhibit stable behavior, with a sensitivity of 17.8 nA·cm<sup>−2</sup>/pH and a linear correlation (<i>r</i><sup>2</sup> = 0.996) across a range of acidic to basic conditions, thereby enhancing the sensor’s performance. The carbon electrodes demonstrated superior sensing properties, attributed to their improved stability and conductivity. This advancement in sensor technology offers promising potential for applications requiring reliable and precise measurements.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes\",\"authors\":\"Alisha Mary Manoj, Leema Rose Viannie\",\"doi\":\"10.1007/s10008-024-06078-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a comparative study of the electrochemical pH sensing characteristics of N-ZnO on a carbon screen-printed electrode (N-ZnO/C) and a silver screen-printed electrode (N-ZnO/Ag). The surface-morphological properties of the film were evaluated using scanning electron microscopy. Electrochemical evaluation was carried out in the presence of common salts present in physiological fluids like NaCl and KCl. Cyclic voltammetry (CV) and chronoamperometry (CA) were carried out to evaluate the response characteristics of the solution under different pHs. Electrochemical impedance spectroscopy (EIS) was carried out to determine the interfacial parameters ruling the pH sensing mechanism for different electrode configurations. The studies revealed that the carbon-based electrodes exhibit stable behavior, with a sensitivity of 17.8 nA·cm<sup>−2</sup>/pH and a linear correlation (<i>r</i><sup>2</sup> = 0.996) across a range of acidic to basic conditions, thereby enhancing the sensor’s performance. The carbon electrodes demonstrated superior sensing properties, attributed to their improved stability and conductivity. This advancement in sensor technology offers promising potential for applications requiring reliable and precise measurements.</p>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10008-024-06078-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06078-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes
This paper presents a comparative study of the electrochemical pH sensing characteristics of N-ZnO on a carbon screen-printed electrode (N-ZnO/C) and a silver screen-printed electrode (N-ZnO/Ag). The surface-morphological properties of the film were evaluated using scanning electron microscopy. Electrochemical evaluation was carried out in the presence of common salts present in physiological fluids like NaCl and KCl. Cyclic voltammetry (CV) and chronoamperometry (CA) were carried out to evaluate the response characteristics of the solution under different pHs. Electrochemical impedance spectroscopy (EIS) was carried out to determine the interfacial parameters ruling the pH sensing mechanism for different electrode configurations. The studies revealed that the carbon-based electrodes exhibit stable behavior, with a sensitivity of 17.8 nA·cm−2/pH and a linear correlation (r2 = 0.996) across a range of acidic to basic conditions, thereby enhancing the sensor’s performance. The carbon electrodes demonstrated superior sensing properties, attributed to their improved stability and conductivity. This advancement in sensor technology offers promising potential for applications requiring reliable and precise measurements.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.