Asma Braham, Laurence Lemelle, Romain Ducasse, Houyem Toukabri, Eleonore Mottin, Benoit Fabrèges, Vincent Calvez, Christophe Place
{"title":"细菌逃逸化合剂动态的表面转换","authors":"Asma Braham, Laurence Lemelle, Romain Ducasse, Houyem Toukabri, Eleonore Mottin, Benoit Fabrèges, Vincent Calvez, Christophe Place","doi":"10.1140/epje/s10189-024-00450-7","DOIUrl":null,"url":null,"abstract":"<p>Flagellar swimming hydrodynamics confers a recognized advantage for attachment on solid surfaces. Whether this motility further enables the following environmental cues was experimentally explored. Motile <i>E. coli</i> (OD ~ 0.1) in a 100 µm-thick channel were exposed to off-equilibrium gradients set by a chemorepellent Ni(NO<sub>3</sub>)<sub>2</sub>-source (250 mM). Single bacterial dynamics at the solid surface was analyzed by dark-field videomicroscopy at a fixed position. The number of bacteria indicated their congregation into a wave escaping from the repellent source. Besides the high velocity drift in the propagation direction within the wave, an unexpectedly high perpendicular component drift was also observed. Swimming hydrodynamics CW-bends the bacteria trajectories during their <i>primo</i> approach to the surface (< 2 µm), and a high enough tumbling frequency likely preserves a notable lateral drift. This comprehension substantiates a survival strategy tailored to toxic environments, which involves drifting along surfaces, promoting the inception of colonization at the most advantageous sites.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00450-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Surface conversion of the dynamics of bacteria escaping chemorepellents\",\"authors\":\"Asma Braham, Laurence Lemelle, Romain Ducasse, Houyem Toukabri, Eleonore Mottin, Benoit Fabrèges, Vincent Calvez, Christophe Place\",\"doi\":\"10.1140/epje/s10189-024-00450-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flagellar swimming hydrodynamics confers a recognized advantage for attachment on solid surfaces. Whether this motility further enables the following environmental cues was experimentally explored. Motile <i>E. coli</i> (OD ~ 0.1) in a 100 µm-thick channel were exposed to off-equilibrium gradients set by a chemorepellent Ni(NO<sub>3</sub>)<sub>2</sub>-source (250 mM). Single bacterial dynamics at the solid surface was analyzed by dark-field videomicroscopy at a fixed position. The number of bacteria indicated their congregation into a wave escaping from the repellent source. Besides the high velocity drift in the propagation direction within the wave, an unexpectedly high perpendicular component drift was also observed. Swimming hydrodynamics CW-bends the bacteria trajectories during their <i>primo</i> approach to the surface (< 2 µm), and a high enough tumbling frequency likely preserves a notable lateral drift. This comprehension substantiates a survival strategy tailored to toxic environments, which involves drifting along surfaces, promoting the inception of colonization at the most advantageous sites.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00450-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00450-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00450-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface conversion of the dynamics of bacteria escaping chemorepellents
Flagellar swimming hydrodynamics confers a recognized advantage for attachment on solid surfaces. Whether this motility further enables the following environmental cues was experimentally explored. Motile E. coli (OD ~ 0.1) in a 100 µm-thick channel were exposed to off-equilibrium gradients set by a chemorepellent Ni(NO3)2-source (250 mM). Single bacterial dynamics at the solid surface was analyzed by dark-field videomicroscopy at a fixed position. The number of bacteria indicated their congregation into a wave escaping from the repellent source. Besides the high velocity drift in the propagation direction within the wave, an unexpectedly high perpendicular component drift was also observed. Swimming hydrodynamics CW-bends the bacteria trajectories during their primo approach to the surface (< 2 µm), and a high enough tumbling frequency likely preserves a notable lateral drift. This comprehension substantiates a survival strategy tailored to toxic environments, which involves drifting along surfaces, promoting the inception of colonization at the most advantageous sites.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.