通过表面掺杂实现空气稳定和锂兼容的石榴石颗粒用于高性能固态电池

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sijie Guo, Ting-Ting Wu, Si-Qi Lu, Su-Ting Weng, Mu-Yao Qi, Bing Li, Yong-Gang Sun, Si-Dong Zhang, Xue-Feng Wang, Hong-Shen Zhang and An-Min Cao
{"title":"通过表面掺杂实现空气稳定和锂兼容的石榴石颗粒用于高性能固态电池","authors":"Sijie Guo, Ting-Ting Wu, Si-Qi Lu, Su-Ting Weng, Mu-Yao Qi, Bing Li, Yong-Gang Sun, Si-Dong Zhang, Xue-Feng Wang, Hong-Shen Zhang and An-Min Cao","doi":"10.1039/D4EE03199G","DOIUrl":null,"url":null,"abstract":"<p >Garnet-type solid-state electrolytes (SSEs), typically Li<small><sub>6.5</sub></small>La<small><sub>3</sub></small>Zr<small><sub>1.5</sub></small>Ta<small><sub>0.5</sub></small>O<small><sub>12</sub></small> (LLZT), hold great promise for next-generation lithium metal batteries (LMBs). However, LLZT, with a high content of reactive Li<small><sup>+</sup></small>, is air-sensitive, which forms insulating and lithiophobic impurities, jeopardizing its practical applications. Here, we demonstrate that crust-localized Fe<small><sup>3+</sup></small> doping of the LLZT pellet (CF-LLZT) ensures high air stability and lithium compatibility without hurting its ionic conductivity. Briefly, Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanofilms are first deposited onto the LLZT substrate, and subsequent high-temperature sintering drives Fe<small><sup>3+</sup></small> into the underneath LLZT, forming a Li<small><sup>+</sup></small> deficient crust with the bulk structure unchanged. This surface-renovated LLZT can extend air-exposure time up to 1 month without forming Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> containments. The symmetric cell of Li/CF-LLZT/Li shows a low interfacial resistance of 6 Ω cm<small><sup>2</sup></small> (1580 Ω cm<small><sup>2</sup></small> for Li/LLZT/Li) and stable electrochemical performance (&gt;5000 h). The assembled LMBs using different cathode materials, particularly LiFePO<small><sub>4</sub></small> and LiNi<small><sub>0.83</sub></small>Co<small><sub>0.07</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small>, demonstrate high reversible capacity and promising cycling capability. Unlike bulk Fe<small><sup>3+</sup></small> doping, which results in a significant decline in Li<small><sup>+</sup></small> conductivity and renders it unsuitable for use in SSEs, our study highlighted the importance of surface structure modulation of SSEs as an effective research avenue to circumvent the interfacial challenge to facilitate their future commercialization.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 21","pages":" 8392-8401"},"PeriodicalIF":32.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air-stable and lithium-compatible garnet pellet enabled by surface doping for high-performance solid-state batteries†\",\"authors\":\"Sijie Guo, Ting-Ting Wu, Si-Qi Lu, Su-Ting Weng, Mu-Yao Qi, Bing Li, Yong-Gang Sun, Si-Dong Zhang, Xue-Feng Wang, Hong-Shen Zhang and An-Min Cao\",\"doi\":\"10.1039/D4EE03199G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Garnet-type solid-state electrolytes (SSEs), typically Li<small><sub>6.5</sub></small>La<small><sub>3</sub></small>Zr<small><sub>1.5</sub></small>Ta<small><sub>0.5</sub></small>O<small><sub>12</sub></small> (LLZT), hold great promise for next-generation lithium metal batteries (LMBs). However, LLZT, with a high content of reactive Li<small><sup>+</sup></small>, is air-sensitive, which forms insulating and lithiophobic impurities, jeopardizing its practical applications. Here, we demonstrate that crust-localized Fe<small><sup>3+</sup></small> doping of the LLZT pellet (CF-LLZT) ensures high air stability and lithium compatibility without hurting its ionic conductivity. Briefly, Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanofilms are first deposited onto the LLZT substrate, and subsequent high-temperature sintering drives Fe<small><sup>3+</sup></small> into the underneath LLZT, forming a Li<small><sup>+</sup></small> deficient crust with the bulk structure unchanged. This surface-renovated LLZT can extend air-exposure time up to 1 month without forming Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> containments. The symmetric cell of Li/CF-LLZT/Li shows a low interfacial resistance of 6 Ω cm<small><sup>2</sup></small> (1580 Ω cm<small><sup>2</sup></small> for Li/LLZT/Li) and stable electrochemical performance (&gt;5000 h). The assembled LMBs using different cathode materials, particularly LiFePO<small><sub>4</sub></small> and LiNi<small><sub>0.83</sub></small>Co<small><sub>0.07</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small>, demonstrate high reversible capacity and promising cycling capability. Unlike bulk Fe<small><sup>3+</sup></small> doping, which results in a significant decline in Li<small><sup>+</sup></small> conductivity and renders it unsuitable for use in SSEs, our study highlighted the importance of surface structure modulation of SSEs as an effective research avenue to circumvent the interfacial challenge to facilitate their future commercialization.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 21\",\"pages\":\" 8392-8401\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03199g\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03199g","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以 Li6.5La3Zr1.5Ta0.5O12 (LLZT)为典型代表的石榴石型固态电解质(SSE)在下一代锂金属电池(LMB)中大有可为。然而,高活性 Li+ 含量的 LLZT 对空气敏感,会形成绝缘和疏锂杂质,从而影响其实际应用。在这里,我们证明了在 LLZT 颗粒(CF-LLZT)中掺入结壳定位的 Fe3+,可确保其具有高空气稳定性和锂兼容性,而不会损害其离子导电性。简而言之,首先在 LLZT 基底上沉积 Fe2O3 纳米薄膜,然后通过高温烧结将 Fe3+ 驱入 LLZT 底部,形成缺 Li+ 的结壳,而主体结构保持不变。这种表面翻新的 LLZT 可将空气暴露时间延长至 1 个月,而不会形成 Li2CO3 包裹体。Li/CF-LLZT/Li 的对称电池显示出 6 Ω cm2 的低界面电阻(Li/LLZT/Li 为 1580 Ω cm2)和稳定的电化学性能(> 5000 h)。使用不同阴极材料(尤其是 LiFePO4 和 LiNi0.83Co0.07Mn0.1O2)组装的 LMB 具有高可逆容量和良好的循环能力。与掺入块状 Fe3+ 不同的是,掺入块状 Fe3+ 会导致 Li+ 电导率显著下降,使其不适合用于 SSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Air-stable and lithium-compatible garnet pellet enabled by surface doping for high-performance solid-state batteries†

Air-stable and lithium-compatible garnet pellet enabled by surface doping for high-performance solid-state batteries†

Garnet-type solid-state electrolytes (SSEs), typically Li6.5La3Zr1.5Ta0.5O12 (LLZT), hold great promise for next-generation lithium metal batteries (LMBs). However, LLZT, with a high content of reactive Li+, is air-sensitive, which forms insulating and lithiophobic impurities, jeopardizing its practical applications. Here, we demonstrate that crust-localized Fe3+ doping of the LLZT pellet (CF-LLZT) ensures high air stability and lithium compatibility without hurting its ionic conductivity. Briefly, Fe2O3 nanofilms are first deposited onto the LLZT substrate, and subsequent high-temperature sintering drives Fe3+ into the underneath LLZT, forming a Li+ deficient crust with the bulk structure unchanged. This surface-renovated LLZT can extend air-exposure time up to 1 month without forming Li2CO3 containments. The symmetric cell of Li/CF-LLZT/Li shows a low interfacial resistance of 6 Ω cm2 (1580 Ω cm2 for Li/LLZT/Li) and stable electrochemical performance (>5000 h). The assembled LMBs using different cathode materials, particularly LiFePO4 and LiNi0.83Co0.07Mn0.1O2, demonstrate high reversible capacity and promising cycling capability. Unlike bulk Fe3+ doping, which results in a significant decline in Li+ conductivity and renders it unsuitable for use in SSEs, our study highlighted the importance of surface structure modulation of SSEs as an effective research avenue to circumvent the interfacial challenge to facilitate their future commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信