通过调节抗氧化溶剂将钴酸锂稳定在 4.6 V 电压下

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hengyu Ren, Guorui Zheng, Yuhang Li, Shiming Chen, Xiaohu Wang, Mingzheng Zhang, Wenguang Zhao, Haocong Yi, Weiyuan Huang, Jianjun Fang, Tongchao Liu, Luyi Yang, Ming Liu, Qinghe Zhao and Feng Pan
{"title":"通过调节抗氧化溶剂将钴酸锂稳定在 4.6 V 电压下","authors":"Hengyu Ren, Guorui Zheng, Yuhang Li, Shiming Chen, Xiaohu Wang, Mingzheng Zhang, Wenguang Zhao, Haocong Yi, Weiyuan Huang, Jianjun Fang, Tongchao Liu, Luyi Yang, Ming Liu, Qinghe Zhao and Feng Pan","doi":"10.1039/D4EE02049A","DOIUrl":null,"url":null,"abstract":"<p >For LiCoO<small><sub>2</sub></small> (LCO) operating at high voltages (&gt;4.5 V <em>vs.</em> Li/Li<small><sup>+</sup></small>), the intensive side reactions between LCO and traditional ethylene carbonate (EC)-based electrolytes with LiPF<small><sub>6</sub></small> salts can produce plenty of corrosive species (such as HF and HPO<small><sub>2</sub></small>F<small><sub>2</sub></small>), causing severe surface degradation. Herein, anti-oxidative fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC) were selected as co-solvents to reduce the generation of corrosive species. Besides, PF<small><sub>6</sub></small><small><sup>−</sup></small> anions enrich the Helmholtz plane of the LCO/electrolyte interface and promote the formation of a robust cathode/electrolyte interphase (CEI) featuring LiF/Li<small><sub><em>x</em></sub></small>PO<small><sub><em>y</em></sub></small>F<small><sub><em>z</em></sub></small>/Li<small><sub>3</sub></small>PO<small><sub>4</sub></small> inorganics and P-containing organics under the synergy of fluorinated solvents, which significantly inhibits the catalysis of highly oxidative Co<small><sup>4+</sup></small>/O<small><sup><em>n</em>−</sup></small> (0 &lt; <em>n</em> &lt; 2). Benefiting from the reduced corrosive species and reinforced CEI, the layered structure of the LCO surface is well preserved during long-term cycling, with a highly reversible O3/H1-3 phase transition. Consequently, a LCO||graphite pouch cell exhibits a remarkable capacity retention of 85.7% after 500 cycles in 3.0–4.55 V. This work provides a new insight into developing advanced functional electrolytes for high-voltage lithium-ion batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 20","pages":" 7944-7957"},"PeriodicalIF":32.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing LiCoO2 at 4.6 V by regulating anti-oxidative solvents†\",\"authors\":\"Hengyu Ren, Guorui Zheng, Yuhang Li, Shiming Chen, Xiaohu Wang, Mingzheng Zhang, Wenguang Zhao, Haocong Yi, Weiyuan Huang, Jianjun Fang, Tongchao Liu, Luyi Yang, Ming Liu, Qinghe Zhao and Feng Pan\",\"doi\":\"10.1039/D4EE02049A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For LiCoO<small><sub>2</sub></small> (LCO) operating at high voltages (&gt;4.5 V <em>vs.</em> Li/Li<small><sup>+</sup></small>), the intensive side reactions between LCO and traditional ethylene carbonate (EC)-based electrolytes with LiPF<small><sub>6</sub></small> salts can produce plenty of corrosive species (such as HF and HPO<small><sub>2</sub></small>F<small><sub>2</sub></small>), causing severe surface degradation. Herein, anti-oxidative fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC) were selected as co-solvents to reduce the generation of corrosive species. Besides, PF<small><sub>6</sub></small><small><sup>−</sup></small> anions enrich the Helmholtz plane of the LCO/electrolyte interface and promote the formation of a robust cathode/electrolyte interphase (CEI) featuring LiF/Li<small><sub><em>x</em></sub></small>PO<small><sub><em>y</em></sub></small>F<small><sub><em>z</em></sub></small>/Li<small><sub>3</sub></small>PO<small><sub>4</sub></small> inorganics and P-containing organics under the synergy of fluorinated solvents, which significantly inhibits the catalysis of highly oxidative Co<small><sup>4+</sup></small>/O<small><sup><em>n</em>−</sup></small> (0 &lt; <em>n</em> &lt; 2). Benefiting from the reduced corrosive species and reinforced CEI, the layered structure of the LCO surface is well preserved during long-term cycling, with a highly reversible O3/H1-3 phase transition. Consequently, a LCO||graphite pouch cell exhibits a remarkable capacity retention of 85.7% after 500 cycles in 3.0–4.55 V. This work provides a new insight into developing advanced functional electrolytes for high-voltage lithium-ion batteries.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 20\",\"pages\":\" 7944-7957\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02049a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02049a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于在高电压(4.5 V vs. Li/Li+)下工作的钴酸锂(LCO),LCO 与传统的碳酸乙烯酯(EC)基电解质和 LiPF6 盐之间的剧烈副反应会产生大量腐蚀性物质(如 HF 和 HPO2F2),导致严重的表面降解。在此,我们选择了抗氧化的氟碳酸乙烯酯(FEC)和二氟碳酸乙烯酯(DFEC)作为助溶剂,以减少腐蚀性物质的产生。此外,PF6-阴离子丰富了LCO/电解质界面的赫尔姆霍兹平面,在含氟溶剂的协同作用下,促进了以LiF/LixPOyFz/Li3PO4无机物和含P有机物为特征的坚固阴极/电解质相(CEI)的形成,显著抑制了高氧化性Co4+/On-(0 < n <2)的催化。得益于腐蚀性物种的减少和 CEI 的增强,LCO 表面的层状结构在长期循环过程中得到了很好的保留,并出现了高度可逆的 O3/H1-3 相变。因此,在 3.0-4.55 V 下循环 500 次后,LCO||石墨袋电池的容量保持率高达 85.7%。这项研究为开发用于高压锂离子电池的先进功能电解质提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing LiCoO2 at 4.6 V by regulating anti-oxidative solvents†

Stabilizing LiCoO2 at 4.6 V by regulating anti-oxidative solvents†

Stabilizing LiCoO2 at 4.6 V by regulating anti-oxidative solvents†

For LiCoO2 (LCO) operating at high voltages (>4.5 V vs. Li/Li+), the intensive side reactions between LCO and traditional ethylene carbonate (EC)-based electrolytes with LiPF6 salts can produce plenty of corrosive species (such as HF and HPO2F2), causing severe surface degradation. Herein, anti-oxidative fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC) were selected as co-solvents to reduce the generation of corrosive species. Besides, PF6 anions enrich the Helmholtz plane of the LCO/electrolyte interface and promote the formation of a robust cathode/electrolyte interphase (CEI) featuring LiF/LixPOyFz/Li3PO4 inorganics and P-containing organics under the synergy of fluorinated solvents, which significantly inhibits the catalysis of highly oxidative Co4+/On (0 < n < 2). Benefiting from the reduced corrosive species and reinforced CEI, the layered structure of the LCO surface is well preserved during long-term cycling, with a highly reversible O3/H1-3 phase transition. Consequently, a LCO||graphite pouch cell exhibits a remarkable capacity retention of 85.7% after 500 cycles in 3.0–4.55 V. This work provides a new insight into developing advanced functional electrolytes for high-voltage lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信