{"title":"通过协同催化选择性 C-C 键裂解和随后的烯烃底物 Silylperoxylation 来延长碳链","authors":"Jia-Hao Xie, Terumasa Kato, Keiji Maruoka","doi":"10.1021/acscatal.4c04886","DOIUrl":null,"url":null,"abstract":"A Co-catalyzed selective C–C bond cleavage followed by the silylperoxylation of alkene substrates generated a series of alkylsilyl peroxides with good yields and selectivities. Further transformation through transition-metal-catalyzed cleavage of the resulting alkylsilyl peroxides and subsequent functionalization with coupling partners could generate a series of dicarbonyl compounds. This two-step transformation was carried out in a one-pot manner, which enhances the practicability of this approach. A plausible reaction mechanism was proposed to interpret the C–C bond cleavage and subsequent silylperoxylation of the alkene substrates.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-Chain Elongation by Co-Catalyzed Selective C–C Bond Cleavage and Subsequent Silylperoxylation of Alkene Substrates\",\"authors\":\"Jia-Hao Xie, Terumasa Kato, Keiji Maruoka\",\"doi\":\"10.1021/acscatal.4c04886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Co-catalyzed selective C–C bond cleavage followed by the silylperoxylation of alkene substrates generated a series of alkylsilyl peroxides with good yields and selectivities. Further transformation through transition-metal-catalyzed cleavage of the resulting alkylsilyl peroxides and subsequent functionalization with coupling partners could generate a series of dicarbonyl compounds. This two-step transformation was carried out in a one-pot manner, which enhances the practicability of this approach. A plausible reaction mechanism was proposed to interpret the C–C bond cleavage and subsequent silylperoxylation of the alkene substrates.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c04886\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04886","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Carbon-Chain Elongation by Co-Catalyzed Selective C–C Bond Cleavage and Subsequent Silylperoxylation of Alkene Substrates
A Co-catalyzed selective C–C bond cleavage followed by the silylperoxylation of alkene substrates generated a series of alkylsilyl peroxides with good yields and selectivities. Further transformation through transition-metal-catalyzed cleavage of the resulting alkylsilyl peroxides and subsequent functionalization with coupling partners could generate a series of dicarbonyl compounds. This two-step transformation was carried out in a one-pot manner, which enhances the practicability of this approach. A plausible reaction mechanism was proposed to interpret the C–C bond cleavage and subsequent silylperoxylation of the alkene substrates.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.