厚度从 9.5 单层到 17.5 单层的 CdSe@CdS Core@Shell 纳米片的 "巨型 "胶体量子阱异质结构,可实现超高增益激光 (Small 38/2024)

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-19 DOI:10.1002/smll.202470281
Furkan Isik, Savas Delikanli, Emek G. Durmusoglu, Ahmet Tarik Isik, Farzan Shabani, Hamed Dehghanpour Baruj, Hilmi Volkan Demir
{"title":"厚度从 9.5 单层到 17.5 单层的 CdSe@CdS Core@Shell 纳米片的 \"巨型 \"胶体量子阱异质结构,可实现超高增益激光 (Small 38/2024)","authors":"Furkan Isik,&nbsp;Savas Delikanli,&nbsp;Emek G. Durmusoglu,&nbsp;Ahmet Tarik Isik,&nbsp;Farzan Shabani,&nbsp;Hamed Dehghanpour Baruj,&nbsp;Hilmi Volkan Demir","doi":"10.1002/smll.202470281","DOIUrl":null,"url":null,"abstract":"<p><b>Colloidal Quantum Wells</b></p><p>“Giant” CdSe@CdS colloidal quantum wells having thicknesses of 9.5 to 17.5 monolayers enable ultra-high material gain coefficient reaching ∼140,000 cm<sup>−1</sup> owing to the contribution of higher energy states to the gain, their high number of states per energy, and suppressed Auger recombination. This ultra-high material gain capability offers an exceptional platform for electrically-driven colloidal thin-film lasers and in-solution lasing applications. More in article number 2309494, Hilmi Volkan Demir and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470281","citationCount":"0","resultStr":"{\"title\":\"“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)\",\"authors\":\"Furkan Isik,&nbsp;Savas Delikanli,&nbsp;Emek G. Durmusoglu,&nbsp;Ahmet Tarik Isik,&nbsp;Farzan Shabani,&nbsp;Hamed Dehghanpour Baruj,&nbsp;Hilmi Volkan Demir\",\"doi\":\"10.1002/smll.202470281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Colloidal Quantum Wells</b></p><p>“Giant” CdSe@CdS colloidal quantum wells having thicknesses of 9.5 to 17.5 monolayers enable ultra-high material gain coefficient reaching ∼140,000 cm<sup>−1</sup> owing to the contribution of higher energy states to the gain, their high number of states per energy, and suppressed Auger recombination. This ultra-high material gain capability offers an exceptional platform for electrically-driven colloidal thin-film lasers and in-solution lasing applications. More in article number 2309494, Hilmi Volkan Demir and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470281\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470281\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶体量子阱
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)

“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)

“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)

Colloidal Quantum Wells

“Giant” CdSe@CdS colloidal quantum wells having thicknesses of 9.5 to 17.5 monolayers enable ultra-high material gain coefficient reaching ∼140,000 cm−1 owing to the contribution of higher energy states to the gain, their high number of states per energy, and suppressed Auger recombination. This ultra-high material gain capability offers an exceptional platform for electrically-driven colloidal thin-film lasers and in-solution lasing applications. More in article number 2309494, Hilmi Volkan Demir and co-workers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信