{"title":"二维磁性铁碲在单轴应变下的反常拉曼响应:四方和六方多晶体","authors":"Wuxiao Han, Tiansong Zhang, Pengcheng Zhao, Longfei Yang, Mo Cheng, Lina Yang, Jianping Shi, Yabin Chen","doi":"10.1002/smll.202400987","DOIUrl":null,"url":null,"abstract":"2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (<i>t</i>−) and hexagonal (<i>h</i>−) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both <i>t</i>- and <i>h</i>-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Raman Response in 2D Magnetic FeTe Under Uniaxial Strain: Tetragonal and Hexagonal Polymorphs\",\"authors\":\"Wuxiao Han, Tiansong Zhang, Pengcheng Zhao, Longfei Yang, Mo Cheng, Lina Yang, Jianping Shi, Yabin Chen\",\"doi\":\"10.1002/smll.202400987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (<i>t</i>−) and hexagonal (<i>h</i>−) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both <i>t</i>- and <i>h</i>-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202400987\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202400987","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anomalous Raman Response in 2D Magnetic FeTe Under Uniaxial Strain: Tetragonal and Hexagonal Polymorphs
2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (t−) and hexagonal (h−) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both t- and h-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.