迁移学习改进了酶动力学参数的预测

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Alexander Kroll
{"title":"迁移学习改进了酶动力学参数的预测","authors":"Alexander Kroll","doi":"10.1016/j.checat.2024.101121","DOIUrl":null,"url":null,"abstract":"<p>In this issue of <em>Chem Catalysis</em>, Shen and colleagues present a novel model architecture and training technique for predicting enzyme kinetic parameters. The proposed models are an important step toward the development of more accurate kinetic prediction models, which are needed for many important industrial and scientific applications.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning improves predictions of enzyme kinetic parameters\",\"authors\":\"Alexander Kroll\",\"doi\":\"10.1016/j.checat.2024.101121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this issue of <em>Chem Catalysis</em>, Shen and colleagues present a novel model architecture and training technique for predicting enzyme kinetic parameters. The proposed models are an important step toward the development of more accurate kinetic prediction models, which are needed for many important industrial and scientific applications.</p>\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本期《化学催化》(Chem Catalysis)杂志上,Shen 及其同事介绍了一种用于预测酶动力学参数的新型模型结构和训练技术。提出的模型是朝着开发更精确的动力学预测模型迈出的重要一步,许多重要的工业和科学应用都需要这种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning improves predictions of enzyme kinetic parameters

In this issue of Chem Catalysis, Shen and colleagues present a novel model architecture and training technique for predicting enzyme kinetic parameters. The proposed models are an important step toward the development of more accurate kinetic prediction models, which are needed for many important industrial and scientific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信