控制电子自旋态以增强等离子体固氮作用

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Penglei Wang, Boyuan Wu, Hao Wu, Jianfang Wang
{"title":"控制电子自旋态以增强等离子体固氮作用","authors":"Penglei Wang, Boyuan Wu, Hao Wu, Jianfang Wang","doi":"10.1016/j.checat.2024.101112","DOIUrl":null,"url":null,"abstract":"<p>In this issue of <em>Chem Catalysis</em>, Wang et al. have synthesized a single-atom Au<sub>3</sub>Fe<sub>1</sub>/Mo alloy featuring medium-spin Fe(III) through an alloying strategy to enhance plasmonic nitrogen fixation. The enhancement mechanism has been found to originate from the medium-spin Fe centers acting as active sites that facilitate the adsorption and activation of nitrogen molecules.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the electron spin state for enhancing plasmonic nitrogen fixation\",\"authors\":\"Penglei Wang, Boyuan Wu, Hao Wu, Jianfang Wang\",\"doi\":\"10.1016/j.checat.2024.101112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this issue of <em>Chem Catalysis</em>, Wang et al. have synthesized a single-atom Au<sub>3</sub>Fe<sub>1</sub>/Mo alloy featuring medium-spin Fe(III) through an alloying strategy to enhance plasmonic nitrogen fixation. The enhancement mechanism has been found to originate from the medium-spin Fe centers acting as active sites that facilitate the adsorption and activation of nitrogen molecules.</p>\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本期的《化学催化》(Chem Catalysis)杂志上,Wang 等人通过合金化策略合成了一种单原子 Au3Fe1/Mo 合金,该合金具有中等自旋 Fe(III),可增强质子固氮作用。研究发现,这种增强机制源于中旋铁元素中心作为活性位点促进了氮分子的吸附和活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of the electron spin state for enhancing plasmonic nitrogen fixation

In this issue of Chem Catalysis, Wang et al. have synthesized a single-atom Au3Fe1/Mo alloy featuring medium-spin Fe(III) through an alloying strategy to enhance plasmonic nitrogen fixation. The enhancement mechanism has been found to originate from the medium-spin Fe centers acting as active sites that facilitate the adsorption and activation of nitrogen molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信