M. Wirth, C. Hölzl, A. Götzelmann, E. Pultinevicius, F. Meinert
{"title":"环状雷德贝格质子与内壳激发的四极耦合","authors":"M. Wirth, C. Hölzl, A. Götzelmann, E. Pultinevicius, F. Meinert","doi":"10.1103/physrevlett.133.123403","DOIUrl":null,"url":null,"abstract":"Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing due to the second optically active valence electron available. Particularly promising in this context are circular Rydberg atoms, for which long-lived ionic core excitations can be exploited without suffering from detrimental autoionization. Here, we report the implementation of electric quadrupole coupling between the metastable <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><msub><mrow><mi mathvariant=\"normal\">D</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> level and a very high-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mn>79</mn></mrow></math>) circular Rydberg qubit, realized in doubly excited <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mrow><mi>Sr</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>88</mn></mrow></mmultiscripts></mrow></math> atoms prepared from an optical tweezer array. We measure the kHz-scale differential level shift on the circular Rydberg qubit via beat-node Ramsey interferometry comprising spin echo. Observing this coupling requires coherent interrogation of the Rydberg states for more than <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>100</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi mathvariant=\"normal\">s</mi></mrow></math>, which is assisted by tweezer trapping and circular state lifetime enhancement in a black-body radiation suppressing capacitor. Further, we find no noticeable loss of qubit coherence under continuous photon scattering on the ion core, paving the way for laser cooling and imaging of Rydberg atoms. Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits via ionic core manipulation.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadrupole Coupling of Circular Rydberg Qubits to Inner Shell Excitations\",\"authors\":\"M. Wirth, C. Hölzl, A. Götzelmann, E. Pultinevicius, F. Meinert\",\"doi\":\"10.1103/physrevlett.133.123403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing due to the second optically active valence electron available. Particularly promising in this context are circular Rydberg atoms, for which long-lived ionic core excitations can be exploited without suffering from detrimental autoionization. Here, we report the implementation of electric quadrupole coupling between the metastable <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>4</mn><msub><mrow><mi mathvariant=\\\"normal\\\">D</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> level and a very high-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> (<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>n</mi><mo>=</mo><mn>79</mn></mrow></math>) circular Rydberg qubit, realized in doubly excited <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mrow><mi>Sr</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>88</mn></mrow></mmultiscripts></mrow></math> atoms prepared from an optical tweezer array. We measure the kHz-scale differential level shift on the circular Rydberg qubit via beat-node Ramsey interferometry comprising spin echo. Observing this coupling requires coherent interrogation of the Rydberg states for more than <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>100</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\\\"normal\\\">μ</mi><mi mathvariant=\\\"normal\\\">s</mi></mrow></math>, which is assisted by tweezer trapping and circular state lifetime enhancement in a black-body radiation suppressing capacitor. Further, we find no noticeable loss of qubit coherence under continuous photon scattering on the ion core, paving the way for laser cooling and imaging of Rydberg atoms. Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits via ionic core manipulation.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.123403\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.123403","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quadrupole Coupling of Circular Rydberg Qubits to Inner Shell Excitations
Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing due to the second optically active valence electron available. Particularly promising in this context are circular Rydberg atoms, for which long-lived ionic core excitations can be exploited without suffering from detrimental autoionization. Here, we report the implementation of electric quadrupole coupling between the metastable level and a very high- () circular Rydberg qubit, realized in doubly excited atoms prepared from an optical tweezer array. We measure the kHz-scale differential level shift on the circular Rydberg qubit via beat-node Ramsey interferometry comprising spin echo. Observing this coupling requires coherent interrogation of the Rydberg states for more than , which is assisted by tweezer trapping and circular state lifetime enhancement in a black-body radiation suppressing capacitor. Further, we find no noticeable loss of qubit coherence under continuous photon scattering on the ion core, paving the way for laser cooling and imaging of Rydberg atoms. Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits via ionic core manipulation.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks