{"title":"与设备无关的量子密钥分发的熵限与本地贝尔测试","authors":"Ernest Y.-Z. Tan, Ramona Wolf","doi":"10.1103/physrevlett.133.120803","DOIUrl":null,"url":null,"abstract":"One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances. However, existing works have either not resolved the question of DIQKD security against active attackers in this setup, or used methods that do not yield tight bounds on the key rates. In this work, we introduce a general formulation of the key rate computation task in this setup that can be combined with recently developed methods for analyzing standard DIQKD. Using this method, we show that if the short-distance devices exhibit sufficiently high detection efficiencies, positive key rates can be achieved in the long-distance branch with lower detection efficiencies as compared to standard DIQKD setups. This highlights the potential for improved performance of DIQKD over extended distances in scenarios where short-distance correlations are leveraged to validate quantum correlations.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy Bounds for Device-Independent Quantum Key Distribution with Local Bell Test\",\"authors\":\"Ernest Y.-Z. Tan, Ramona Wolf\",\"doi\":\"10.1103/physrevlett.133.120803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances. However, existing works have either not resolved the question of DIQKD security against active attackers in this setup, or used methods that do not yield tight bounds on the key rates. In this work, we introduce a general formulation of the key rate computation task in this setup that can be combined with recently developed methods for analyzing standard DIQKD. Using this method, we show that if the short-distance devices exhibit sufficiently high detection efficiencies, positive key rates can be achieved in the long-distance branch with lower detection efficiencies as compared to standard DIQKD setups. This highlights the potential for improved performance of DIQKD over extended distances in scenarios where short-distance correlations are leveraged to validate quantum correlations.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.120803\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.120803","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Entropy Bounds for Device-Independent Quantum Key Distribution with Local Bell Test
One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances. However, existing works have either not resolved the question of DIQKD security against active attackers in this setup, or used methods that do not yield tight bounds on the key rates. In this work, we introduce a general formulation of the key rate computation task in this setup that can be combined with recently developed methods for analyzing standard DIQKD. Using this method, we show that if the short-distance devices exhibit sufficiently high detection efficiencies, positive key rates can be achieved in the long-distance branch with lower detection efficiencies as compared to standard DIQKD setups. This highlights the potential for improved performance of DIQKD over extended distances in scenarios where short-distance correlations are leveraged to validate quantum correlations.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks