Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang
{"title":"CRISPR-Cas13d靶向抑制了C9orf72六核苷酸重复RNA的重复相关非AUG翻译。","authors":"Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang","doi":"10.1172/jci179016","DOIUrl":null,"url":null,"abstract":"A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR-Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA.\",\"authors\":\"Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang\",\"doi\":\"10.1172/jci179016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci179016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci179016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.