Benoit Durieu, Valentina Savaglia, Yannick Lara, Alexandre Lambion, Igor S. Pessi, Wim Vyverman, Elie Verleyen, Annick Wilmotte
{"title":"(来自底栖垫层的(亚)南极特有蓝藻非常罕见,且地理分布有限","authors":"Benoit Durieu, Valentina Savaglia, Yannick Lara, Alexandre Lambion, Igor S. Pessi, Wim Vyverman, Elie Verleyen, Annick Wilmotte","doi":"10.1111/ecog.07489","DOIUrl":null,"url":null,"abstract":"The Antarctic terrestrial macrobiota are highly endemic and biogeographically structured, but whether this also holds true for microbial groups remains poorly understood. We studied the biogeographic patterns of Antarctic cyanobacteria from benthic microbial mats sampled in 84 lakes from two sub‐Antarctic islands, as well as from eight Antarctic Conservation Biogeographic Regions (ACBRs) which were previously defined based mainly on macroscopic taxa. Analysis of 16S rRNA gene sequences revealed that Antarctic and sub‐Antarctic lakes host significantly different cyanobacterial communities, yet that the bioregionalization pattern did not correspond to the division into ACBRs. Both Antarctic and sub‐Antarctic lakes contain a high number of potentially endemic taxa (41% of the total diversity), of which 33.3% attain a relative abundance of < 1%. Our findings highlight the uniqueness of Antarctic microbiota and the need for increased protection of inland waters in both Antarctica and the sub‐Antarctic islands.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Sub‐)Antarctic endemic cyanobacteria from benthic mats are rare and have restricted geographic distributions\",\"authors\":\"Benoit Durieu, Valentina Savaglia, Yannick Lara, Alexandre Lambion, Igor S. Pessi, Wim Vyverman, Elie Verleyen, Annick Wilmotte\",\"doi\":\"10.1111/ecog.07489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Antarctic terrestrial macrobiota are highly endemic and biogeographically structured, but whether this also holds true for microbial groups remains poorly understood. We studied the biogeographic patterns of Antarctic cyanobacteria from benthic microbial mats sampled in 84 lakes from two sub‐Antarctic islands, as well as from eight Antarctic Conservation Biogeographic Regions (ACBRs) which were previously defined based mainly on macroscopic taxa. Analysis of 16S rRNA gene sequences revealed that Antarctic and sub‐Antarctic lakes host significantly different cyanobacterial communities, yet that the bioregionalization pattern did not correspond to the division into ACBRs. Both Antarctic and sub‐Antarctic lakes contain a high number of potentially endemic taxa (41% of the total diversity), of which 33.3% attain a relative abundance of < 1%. Our findings highlight the uniqueness of Antarctic microbiota and the need for increased protection of inland waters in both Antarctica and the sub‐Antarctic islands.\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ecog.07489\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07489","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
(Sub‐)Antarctic endemic cyanobacteria from benthic mats are rare and have restricted geographic distributions
The Antarctic terrestrial macrobiota are highly endemic and biogeographically structured, but whether this also holds true for microbial groups remains poorly understood. We studied the biogeographic patterns of Antarctic cyanobacteria from benthic microbial mats sampled in 84 lakes from two sub‐Antarctic islands, as well as from eight Antarctic Conservation Biogeographic Regions (ACBRs) which were previously defined based mainly on macroscopic taxa. Analysis of 16S rRNA gene sequences revealed that Antarctic and sub‐Antarctic lakes host significantly different cyanobacterial communities, yet that the bioregionalization pattern did not correspond to the division into ACBRs. Both Antarctic and sub‐Antarctic lakes contain a high number of potentially endemic taxa (41% of the total diversity), of which 33.3% attain a relative abundance of < 1%. Our findings highlight the uniqueness of Antarctic microbiota and the need for increased protection of inland waters in both Antarctica and the sub‐Antarctic islands.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.