用拉格朗日相干结构和无框架通量理解相干湍流和辊室转换

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Nikolas Aksamit, Marwan Katurji, Jiawei Zhang
{"title":"用拉格朗日相干结构和无框架通量理解相干湍流和辊室转换","authors":"Nikolas Aksamit,&nbsp;Marwan Katurji,&nbsp;Jiawei Zhang","doi":"10.1029/2024JD041490","DOIUrl":null,"url":null,"abstract":"<p>We present the first analysis of frame-indifferent (objective) fluxes and material vortices in Large Eddy Simulations of atmospheric boundary layer turbulence. We extract rotating fluid features that maintain structural coherence over time for near-neutral, transitional, and convective boundary layers. In contrast to traditional analysis of coherent structures in turbulent boundary layers, we provide the first identification of vortex boundaries that are mathematically defined to behave as tracer transport barriers. Furthermore, these vortices are indifferent to the choice of observer reference frame and can be identified without user-dependent velocity field decompositions. We find a strong agreement between the geometric qualities of the coherent structures we extract using our new method and classical descriptions of horizontal rolls and convective cells arising from decades of observational studies. We also quantify trends in individual vortex contributions to turbulent and advective fluxes of heat under varying atmospheric stability. Using recently developed tools from the theory of transport barrier fields, we compare diffusive momentum and heat barrier fields with the presence of rolls and cells, and determine a strong connection between heat and momentum orthogonality with the physical drivers of roll-cell transformation. This newly employed frame-indifferent characterization of coherent turbulent structures can be directly applied to numerical model output, and thus provides a new Lagrangian approach to understand complex scale-dependent processes and their associated dynamics.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041490","citationCount":"0","resultStr":"{\"title\":\"Understanding Coherent Turbulence and the Roll-Cell Transition With Lagrangian Coherent Structures and Frame-Indifferent Fluxes\",\"authors\":\"Nikolas Aksamit,&nbsp;Marwan Katurji,&nbsp;Jiawei Zhang\",\"doi\":\"10.1029/2024JD041490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the first analysis of frame-indifferent (objective) fluxes and material vortices in Large Eddy Simulations of atmospheric boundary layer turbulence. We extract rotating fluid features that maintain structural coherence over time for near-neutral, transitional, and convective boundary layers. In contrast to traditional analysis of coherent structures in turbulent boundary layers, we provide the first identification of vortex boundaries that are mathematically defined to behave as tracer transport barriers. Furthermore, these vortices are indifferent to the choice of observer reference frame and can be identified without user-dependent velocity field decompositions. We find a strong agreement between the geometric qualities of the coherent structures we extract using our new method and classical descriptions of horizontal rolls and convective cells arising from decades of observational studies. We also quantify trends in individual vortex contributions to turbulent and advective fluxes of heat under varying atmospheric stability. Using recently developed tools from the theory of transport barrier fields, we compare diffusive momentum and heat barrier fields with the presence of rolls and cells, and determine a strong connection between heat and momentum orthogonality with the physical drivers of roll-cell transformation. This newly employed frame-indifferent characterization of coherent turbulent structures can be directly applied to numerical model output, and thus provides a new Lagrangian approach to understand complex scale-dependent processes and their associated dynamics.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041490\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041490\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041490","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们首次分析了大气边界层湍流大涡模拟中的无框架(客观)通量和物质涡流。我们提取了近中性、过渡和对流边界层的旋转流体特征,这些特征随着时间的推移保持结构的一致性。与传统的湍流边界层相干结构分析不同,我们首次确定了涡旋边界,这些边界在数学上被定义为示踪传输障碍。此外,这些旋涡与观察者参考框架的选择无关,无需用户依赖速度场分解即可识别。我们发现,我们用新方法提取的相干结构的几何质量与几十年观测研究中对水平卷流和对流单元的经典描述非常一致。我们还量化了在不同大气稳定性条件下单个涡旋对湍流和平流热通量的贡献趋势。利用最近从传输障碍场理论中开发的工具,我们比较了存在卷流和单元时的扩散动量和热量障碍场,并确定了热量和动量正交性与卷流-单元转换的物理驱动力之间的紧密联系。这种新采用的相干湍流结构的无框架特征描述可直接应用于数值模型输出,从而为理解复杂的尺度依赖过程及其相关动力学提供了一种新的拉格朗日方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding Coherent Turbulence and the Roll-Cell Transition With Lagrangian Coherent Structures and Frame-Indifferent Fluxes

Understanding Coherent Turbulence and the Roll-Cell Transition With Lagrangian Coherent Structures and Frame-Indifferent Fluxes

We present the first analysis of frame-indifferent (objective) fluxes and material vortices in Large Eddy Simulations of atmospheric boundary layer turbulence. We extract rotating fluid features that maintain structural coherence over time for near-neutral, transitional, and convective boundary layers. In contrast to traditional analysis of coherent structures in turbulent boundary layers, we provide the first identification of vortex boundaries that are mathematically defined to behave as tracer transport barriers. Furthermore, these vortices are indifferent to the choice of observer reference frame and can be identified without user-dependent velocity field decompositions. We find a strong agreement between the geometric qualities of the coherent structures we extract using our new method and classical descriptions of horizontal rolls and convective cells arising from decades of observational studies. We also quantify trends in individual vortex contributions to turbulent and advective fluxes of heat under varying atmospheric stability. Using recently developed tools from the theory of transport barrier fields, we compare diffusive momentum and heat barrier fields with the presence of rolls and cells, and determine a strong connection between heat and momentum orthogonality with the physical drivers of roll-cell transformation. This newly employed frame-indifferent characterization of coherent turbulent structures can be directly applied to numerical model output, and thus provides a new Lagrangian approach to understand complex scale-dependent processes and their associated dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信