超细玻璃有机气溶胶粒子含水量的滞后性

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Manqiu Cheng, Ying Li, Mikinori Kuwata
{"title":"超细玻璃有机气溶胶粒子含水量的滞后性","authors":"Manqiu Cheng,&nbsp;Ying Li,&nbsp;Mikinori Kuwata","doi":"10.1029/2024JD041440","DOIUrl":null,"url":null,"abstract":"<p>Water content of aerosol particles is atmospherically important. Water content of organic aerosol (OA) particles has been estimated by assuming thermodynamic equilibrium. Here, we discovered that the hysteresis phenomenon occurred to water content of glassy ultrafine OA particles, demonstrating that thermodynamically non-equilibrium states need to be considered. Hygroscopic growth for monodisperse ultrafine particles (sucrose and glucose) was investigated for the temperature range from 252 to 296 K. Hysteresis was not observable at 296 K, consistent with literature data. However, hysteresis in water content was observed at sub-273 K. The lowest relative humidity (RH), at which hygroscopic growth of particles did not depend on exposure history to water vapor, was defined as threshold RH. Threshold RH for 100 nm particles was approximately the same as the glass transition points when hysteresis clearly happened, demonstrating that water diffusion in a highly viscous matrix of organic aerosols was the key to the phenomenon. Employment of a kinetic multi-layer model quantitatively predicted threshold RH as a function of temperature, exposure time, and the particle size. Considering the temperature and RH range of Earth's atmosphere, we hypothesize that hysteresis in water content for organic aerosols ubiquitously occurs in the upper troposphere, impacting chemical aging and cloud formation processes.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hysteresis in Water Content of Ultrafine Glassy Organic Aerosol Particles\",\"authors\":\"Manqiu Cheng,&nbsp;Ying Li,&nbsp;Mikinori Kuwata\",\"doi\":\"10.1029/2024JD041440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water content of aerosol particles is atmospherically important. Water content of organic aerosol (OA) particles has been estimated by assuming thermodynamic equilibrium. Here, we discovered that the hysteresis phenomenon occurred to water content of glassy ultrafine OA particles, demonstrating that thermodynamically non-equilibrium states need to be considered. Hygroscopic growth for monodisperse ultrafine particles (sucrose and glucose) was investigated for the temperature range from 252 to 296 K. Hysteresis was not observable at 296 K, consistent with literature data. However, hysteresis in water content was observed at sub-273 K. The lowest relative humidity (RH), at which hygroscopic growth of particles did not depend on exposure history to water vapor, was defined as threshold RH. Threshold RH for 100 nm particles was approximately the same as the glass transition points when hysteresis clearly happened, demonstrating that water diffusion in a highly viscous matrix of organic aerosols was the key to the phenomenon. Employment of a kinetic multi-layer model quantitatively predicted threshold RH as a function of temperature, exposure time, and the particle size. Considering the temperature and RH range of Earth's atmosphere, we hypothesize that hysteresis in water content for organic aerosols ubiquitously occurs in the upper troposphere, impacting chemical aging and cloud formation processes.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041440\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041440","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶粒子的含水量对大气非常重要。有机气溶胶(OA)粒子的含水量是通过假设热力学平衡来估算的。在这里,我们发现玻璃状超细有机气溶胶粒子的含水量出现了滞后现象,这表明需要考虑热力学非平衡状态。我们研究了单分散超细粒子(蔗糖和葡萄糖)在 252 至 296 K 温度范围内的吸湿生长情况。颗粒的吸湿性生长不依赖于水蒸气暴露历史的最低相对湿度(RH)被定义为阈值相对湿度。100 nm 颗粒的阈值相对湿度与明显发生滞后时的玻璃化转变点大致相同,这表明水在有机气溶胶高粘度基质中的扩散是造成这种现象的关键。采用动力学多层模型定量预测了阈值相对湿度与温度、暴露时间和颗粒大小的函数关系。考虑到地球大气层的温度和相对湿度范围,我们假设对流层上部普遍存在有机气溶胶含水量滞后现象,从而影响化学老化和云的形成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hysteresis in Water Content of Ultrafine Glassy Organic Aerosol Particles

Water content of aerosol particles is atmospherically important. Water content of organic aerosol (OA) particles has been estimated by assuming thermodynamic equilibrium. Here, we discovered that the hysteresis phenomenon occurred to water content of glassy ultrafine OA particles, demonstrating that thermodynamically non-equilibrium states need to be considered. Hygroscopic growth for monodisperse ultrafine particles (sucrose and glucose) was investigated for the temperature range from 252 to 296 K. Hysteresis was not observable at 296 K, consistent with literature data. However, hysteresis in water content was observed at sub-273 K. The lowest relative humidity (RH), at which hygroscopic growth of particles did not depend on exposure history to water vapor, was defined as threshold RH. Threshold RH for 100 nm particles was approximately the same as the glass transition points when hysteresis clearly happened, demonstrating that water diffusion in a highly viscous matrix of organic aerosols was the key to the phenomenon. Employment of a kinetic multi-layer model quantitatively predicted threshold RH as a function of temperature, exposure time, and the particle size. Considering the temperature and RH range of Earth's atmosphere, we hypothesize that hysteresis in water content for organic aerosols ubiquitously occurs in the upper troposphere, impacting chemical aging and cloud formation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信