通过超临界流体加工分馏食用油脂的进展与挑战

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
A. A. Gigi, Ug. Praveena, Prasanth S. Pillai, K. V. Ragavan, C. Anandharamakrishnan
{"title":"通过超临界流体加工分馏食用油脂的进展与挑战","authors":"A. A. Gigi,&nbsp;Ug. Praveena,&nbsp;Prasanth S. Pillai,&nbsp;K. V. Ragavan,&nbsp;C. Anandharamakrishnan","doi":"10.1111/1541-4337.70017","DOIUrl":null,"url":null,"abstract":"<p>Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances and challenges in the fractionation of edible oils and fats through supercritical fluid processing\",\"authors\":\"A. A. Gigi,&nbsp;Ug. Praveena,&nbsp;Prasanth S. Pillai,&nbsp;K. V. Ragavan,&nbsp;C. Anandharamakrishnan\",\"doi\":\"10.1111/1541-4337.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70017\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70017","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石化溶剂被广泛用于工业规模的食用油脂中生物大分子的提取和分馏。然而,由于其安全问题、毒性、价格波动和可持续性,近年来人们一直在积极探索替代溶剂和技术。据报道,超声波和微波辅助萃取、超临界二氧化碳萃取、超临界流体分馏和亚临界水萃取等技术以及离子液体和深共晶溶剂等溶剂可用于生物大分子的萃取和分馏。其中,超临界二氧化碳萃取和分馏是一些最有前途的绿色技术,有可能取代以石油化工为基础的传统技术。添加水、乙醇和丙酮等助溶剂可提高从食用油脂中提取两亲性和极性化合物的能力。超临界流体处理技术具有多种应用,包括浓缩溶质、选择性分离所需分子以及从原料中分离不需要的化合物。温度、压力、粒度、孔隙率、流速、溶剂与进料比、密度、粘度、扩散性、溶解度、分配系数和分离因子是从脂类中提取和分馏所需生物分子的基本要素。与传统流体相比,超临界流体因其可调整的溶剂特性而独树一帜。总之,基于超临界流体的方法有很大的发展空间,可以取代基于溶剂的传统方法,在创造可持续食品加工技术方面取得进展。本综述对超临界条件下从食用油脂中提取和分馏生物大分子的参数进行了严格评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances and challenges in the fractionation of edible oils and fats through supercritical fluid processing

Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信