基于图像的 FY4A/AGRI 全日云物理参数检索及其在青藏高原的应用

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Zhijun Zhao, Feng Zhang, Wenwen Li, Jingwei Li
{"title":"基于图像的 FY4A/AGRI 全日云物理参数检索及其在青藏高原的应用","authors":"Zhijun Zhao,&nbsp;Feng Zhang,&nbsp;Wenwen Li,&nbsp;Jingwei Li","doi":"10.1029/2024JD041032","DOIUrl":null,"url":null,"abstract":"<p>Satellite remote sensing serves as a crucial means to acquire cloud physical parameters. However, existing official cloud products from the advanced geostationary radiation imager (AGRI) onboard the Fengyun-4A geostationary satellite lack spatiotemporal continuity and important micro-physical properties. In this study, an image-based transfer learning ResUnet (TL-ResUnet) model was applied to realize all-day and high-precision retrieval of cloud physical parameters from AGRI thermal infrared measurements. Combining the observation advantages of geostationary and polar-orbiting satellites, the TL-ResUnet model was pre-trained with official cloud products from advanced Himawari imager (AHI) and transfer-trained with official cloud products from moderate resolution imaging spectroradiometer (MODIS), respectively. For comparison, a pixel-based transfer learning random forest (TL-RF) model was trained using the equally distributed data sets. Taking MODIS official products as the benchmarks, the TL-ResUnet model achieved an overall accuracy of 79.82% for identifying cloud phase and root mean squared errors of 1.99 km, 7.11 μm, and 12.87 for estimating cloud top height, cloud effective radius, and cloud optical thickness, outperforming the precision of AGRI and AHI official products. Compared to the TL-RF model, the TL-ResUnet model utilized the spatial information of clouds to significantly improve the retrieval performance and achieve more than a 6-fold increase in speed for single full-disk retrieval. Moreover, AGRI TL-ResUnet products with spatiotemporal continuity and high precision were used to accurately describe the spatial distribution characteristics of cloud fractions and cloud properties over the Tibetan Plateau, and provide the diurnal variation of cloud cover and cloud properties across different seasons for the first time.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-Based Retrieval of All-Day Cloud Physical Parameters for FY4A/AGRI and Its Application Over the Tibetan Plateau\",\"authors\":\"Zhijun Zhao,&nbsp;Feng Zhang,&nbsp;Wenwen Li,&nbsp;Jingwei Li\",\"doi\":\"10.1029/2024JD041032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Satellite remote sensing serves as a crucial means to acquire cloud physical parameters. However, existing official cloud products from the advanced geostationary radiation imager (AGRI) onboard the Fengyun-4A geostationary satellite lack spatiotemporal continuity and important micro-physical properties. In this study, an image-based transfer learning ResUnet (TL-ResUnet) model was applied to realize all-day and high-precision retrieval of cloud physical parameters from AGRI thermal infrared measurements. Combining the observation advantages of geostationary and polar-orbiting satellites, the TL-ResUnet model was pre-trained with official cloud products from advanced Himawari imager (AHI) and transfer-trained with official cloud products from moderate resolution imaging spectroradiometer (MODIS), respectively. For comparison, a pixel-based transfer learning random forest (TL-RF) model was trained using the equally distributed data sets. Taking MODIS official products as the benchmarks, the TL-ResUnet model achieved an overall accuracy of 79.82% for identifying cloud phase and root mean squared errors of 1.99 km, 7.11 μm, and 12.87 for estimating cloud top height, cloud effective radius, and cloud optical thickness, outperforming the precision of AGRI and AHI official products. Compared to the TL-RF model, the TL-ResUnet model utilized the spatial information of clouds to significantly improve the retrieval performance and achieve more than a 6-fold increase in speed for single full-disk retrieval. Moreover, AGRI TL-ResUnet products with spatiotemporal continuity and high precision were used to accurately describe the spatial distribution characteristics of cloud fractions and cloud properties over the Tibetan Plateau, and provide the diurnal variation of cloud cover and cloud properties across different seasons for the first time.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041032\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041032","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

卫星遥感是获取云物理参数的重要手段。然而,风云四号 A 卫星上搭载的先进静止辐射成像仪(AGRI)提供的现有官方云产品缺乏时空连续性和重要的微观物理特性。本研究应用基于图像的迁移学习 ResUnet(TL-ResUnet)模型,实现了对 AGRI 热红外测量数据的全天候、高精度云物理参数检索。结合地球静止卫星和极轨卫星的观测优势,TL-ResUnet 模型分别使用先进向日葵成像仪(AHI)的官方云产品进行预训练和使用中分辨率成像分光仪(MODIS)的官方云产品进行转移训练。为了进行比较,使用等量分布的数据集训练了基于像素的迁移学习随机森林(TL-RF)模型。以 MODIS 官方产品为基准,TL-ResUnet 模型识别云相的总体准确率为 79.82%,估计云顶高度、云有效半径和云光学厚度的均方根误差分别为 1.99 km、7.11 μm 和 12.87,精度优于 AGRI 和 AHI 官方产品。与 TL-RF 模式相比,TL-ResUnet 模式利用云的空间信息显著提高了检索性能,单次全盘检索速度提高了 6 倍以上。此外,利用具有时空连续性和高精度的 AGRI TL-ResUnet 产品,准确描述了青藏高原云分和云属性的空间分布特征,并首次提供了不同季节云量和云属性的日变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-Based Retrieval of All-Day Cloud Physical Parameters for FY4A/AGRI and Its Application Over the Tibetan Plateau

Satellite remote sensing serves as a crucial means to acquire cloud physical parameters. However, existing official cloud products from the advanced geostationary radiation imager (AGRI) onboard the Fengyun-4A geostationary satellite lack spatiotemporal continuity and important micro-physical properties. In this study, an image-based transfer learning ResUnet (TL-ResUnet) model was applied to realize all-day and high-precision retrieval of cloud physical parameters from AGRI thermal infrared measurements. Combining the observation advantages of geostationary and polar-orbiting satellites, the TL-ResUnet model was pre-trained with official cloud products from advanced Himawari imager (AHI) and transfer-trained with official cloud products from moderate resolution imaging spectroradiometer (MODIS), respectively. For comparison, a pixel-based transfer learning random forest (TL-RF) model was trained using the equally distributed data sets. Taking MODIS official products as the benchmarks, the TL-ResUnet model achieved an overall accuracy of 79.82% for identifying cloud phase and root mean squared errors of 1.99 km, 7.11 μm, and 12.87 for estimating cloud top height, cloud effective radius, and cloud optical thickness, outperforming the precision of AGRI and AHI official products. Compared to the TL-RF model, the TL-ResUnet model utilized the spatial information of clouds to significantly improve the retrieval performance and achieve more than a 6-fold increase in speed for single full-disk retrieval. Moreover, AGRI TL-ResUnet products with spatiotemporal continuity and high precision were used to accurately describe the spatial distribution characteristics of cloud fractions and cloud properties over the Tibetan Plateau, and provide the diurnal variation of cloud cover and cloud properties across different seasons for the first time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信