{"title":"利用浅层神经网络检测智能手机惯性传感器数据中的人类行为偏差","authors":"Sakshi, M. P. S. Bhatia, Pinaki Chakraborty","doi":"10.1111/coin.12699","DOIUrl":null,"url":null,"abstract":"<p>The integration of different Mobile Edge Computing (MEC) applications has significantly enhanced the realm of security and surveillance, with Human Activity Recognition (HAR) standing out as a crucial application. The diverse sensors found in smartphones have made it convenient for monitoring applications to gather and analyze data, rendering them valuable for HAR purposes. Moreover, MEC can be employed to automate surveillance, allowing intelligent monitoring of restricted areas to identify and respond to unwanted or suspicious activities. This research develops a system using motion sensors in smartphones to identify unusual human activities. People's smartphones were employed to monitor both suspicious and regular activities. Information was collected for various actions categorized as either suspicious or regular. When a person performs a certain action, the smartphone records a series of sensory data, analyse important patterns from the basic data, and then determines what the person is doing by combining information from different sensors. To prepare the data, information from different sensors was aligned to a shared timeline. In this study, we used a sliding window approach on synchronized data to feed sequences into LSTM and CNN models. These models, which include initial layers of LSTM and CNN, automatically find important patterns in the order of human activities. We combined SVM with the features extracted by the shallow Neural Network to make a mixed model that predicts suspicious activities. Lastly, we compared LSTM, CNN, and our new shallow mixed neural network using a new real-time dataset. The mixed model of CNN and SVM achieved an accuracy of 94.43%. Additionally, the sliding window method's effectiveness was confirmed with a 4.28% improvement in accuracy.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of aberration in human behavior using shallow neural network over smartphone inertial sensors data\",\"authors\":\"Sakshi, M. P. S. Bhatia, Pinaki Chakraborty\",\"doi\":\"10.1111/coin.12699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of different Mobile Edge Computing (MEC) applications has significantly enhanced the realm of security and surveillance, with Human Activity Recognition (HAR) standing out as a crucial application. The diverse sensors found in smartphones have made it convenient for monitoring applications to gather and analyze data, rendering them valuable for HAR purposes. Moreover, MEC can be employed to automate surveillance, allowing intelligent monitoring of restricted areas to identify and respond to unwanted or suspicious activities. This research develops a system using motion sensors in smartphones to identify unusual human activities. People's smartphones were employed to monitor both suspicious and regular activities. Information was collected for various actions categorized as either suspicious or regular. When a person performs a certain action, the smartphone records a series of sensory data, analyse important patterns from the basic data, and then determines what the person is doing by combining information from different sensors. To prepare the data, information from different sensors was aligned to a shared timeline. In this study, we used a sliding window approach on synchronized data to feed sequences into LSTM and CNN models. These models, which include initial layers of LSTM and CNN, automatically find important patterns in the order of human activities. We combined SVM with the features extracted by the shallow Neural Network to make a mixed model that predicts suspicious activities. Lastly, we compared LSTM, CNN, and our new shallow mixed neural network using a new real-time dataset. The mixed model of CNN and SVM achieved an accuracy of 94.43%. Additionally, the sliding window method's effectiveness was confirmed with a 4.28% improvement in accuracy.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12699\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12699","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Detection of aberration in human behavior using shallow neural network over smartphone inertial sensors data
The integration of different Mobile Edge Computing (MEC) applications has significantly enhanced the realm of security and surveillance, with Human Activity Recognition (HAR) standing out as a crucial application. The diverse sensors found in smartphones have made it convenient for monitoring applications to gather and analyze data, rendering them valuable for HAR purposes. Moreover, MEC can be employed to automate surveillance, allowing intelligent monitoring of restricted areas to identify and respond to unwanted or suspicious activities. This research develops a system using motion sensors in smartphones to identify unusual human activities. People's smartphones were employed to monitor both suspicious and regular activities. Information was collected for various actions categorized as either suspicious or regular. When a person performs a certain action, the smartphone records a series of sensory data, analyse important patterns from the basic data, and then determines what the person is doing by combining information from different sensors. To prepare the data, information from different sensors was aligned to a shared timeline. In this study, we used a sliding window approach on synchronized data to feed sequences into LSTM and CNN models. These models, which include initial layers of LSTM and CNN, automatically find important patterns in the order of human activities. We combined SVM with the features extracted by the shallow Neural Network to make a mixed model that predicts suspicious activities. Lastly, we compared LSTM, CNN, and our new shallow mixed neural network using a new real-time dataset. The mixed model of CNN and SVM achieved an accuracy of 94.43%. Additionally, the sliding window method's effectiveness was confirmed with a 4.28% improvement in accuracy.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.