{"title":"从地衣 Parmelinella wallichiana (Taylor) Elix & Hale 中提取的富含去苷和去苷酮的水醇提取物通过调节 p53、FOXO1 和 PALLADIN 基因,选择性地限制非小细胞肺癌的发生","authors":"Saparja Saha, Ribhu Ray, Santanu Paul","doi":"10.1016/j.fitote.2024.106211","DOIUrl":null,"url":null,"abstract":"<div><p>The non-specificity of contemporary cancer therapeutics has enticed us to develop safer, anticancer alternatives from natural resources. Lichens are unique natural entities which have long been neglected for explorations in cancer therapy, despite their vast potential. Our present study aims to investigate the anti-cancer potential of a wild lichen <em>Parmelinella wallichiana</em>. The anti-proliferative efficacy of the lichen extracts were screened through MTT assay against a panel of cell lines and the potent hydroalcoholic extract was selected for further evaluation against the most sensitive lung-cancer cell line A549 by implementing a wide range of microscopic and flow cytometric applications. The observations suggest that the extract could selectively induce apoptosis by augmenting ROS and disrupting the mitochondrial membrane potentiality. It was also found that the lichen-induced apoptosis was regulated by two crucial tumor suppressor genes, <em>FOXO1</em>, and <em>p53</em>, along with cell cycle inhibitor <em>p21</em> which ultimately resulted in robust apoptosis through the up-regulation of pro-apoptotic <em>BAX</em> expression. Moreover, the extract also restricted the cancer progression by down-regulating the <em>PALLADIN</em> expression. Further, an LC-MS-based metabolomic profile highlighted a number of depsides, depsidones and dibenzofurans, which included atranorin, physodalic acid, salazinic acid, constictic acid and usnic acid. Then, an in silico docking with these lichen-derived metabolites against the PI3Kα receptor predicted these compounds has a binding affinity close to a standard PI3Kα inhibitor copanlisib. The study concludes that the extract restricts lung cancer possibly through the PI3Kα/FOXO1 axis and thus <em>Parmelinella wallichiana</em> represents a potential resource for anti-lung cancer drug development in future.</p></div>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":"179 ","pages":"Article 106211"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depside and depsidone-rich hydroalcoholic extract, resourced from the lichen Parmelinella wallichiana (Taylor) Elix & Hale selectively restricts Non-Small Cell Lung Cancer by modulating p53, FOXO1 and PALLADIN genes\",\"authors\":\"Saparja Saha, Ribhu Ray, Santanu Paul\",\"doi\":\"10.1016/j.fitote.2024.106211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The non-specificity of contemporary cancer therapeutics has enticed us to develop safer, anticancer alternatives from natural resources. Lichens are unique natural entities which have long been neglected for explorations in cancer therapy, despite their vast potential. Our present study aims to investigate the anti-cancer potential of a wild lichen <em>Parmelinella wallichiana</em>. The anti-proliferative efficacy of the lichen extracts were screened through MTT assay against a panel of cell lines and the potent hydroalcoholic extract was selected for further evaluation against the most sensitive lung-cancer cell line A549 by implementing a wide range of microscopic and flow cytometric applications. The observations suggest that the extract could selectively induce apoptosis by augmenting ROS and disrupting the mitochondrial membrane potentiality. It was also found that the lichen-induced apoptosis was regulated by two crucial tumor suppressor genes, <em>FOXO1</em>, and <em>p53</em>, along with cell cycle inhibitor <em>p21</em> which ultimately resulted in robust apoptosis through the up-regulation of pro-apoptotic <em>BAX</em> expression. Moreover, the extract also restricted the cancer progression by down-regulating the <em>PALLADIN</em> expression. Further, an LC-MS-based metabolomic profile highlighted a number of depsides, depsidones and dibenzofurans, which included atranorin, physodalic acid, salazinic acid, constictic acid and usnic acid. Then, an in silico docking with these lichen-derived metabolites against the PI3Kα receptor predicted these compounds has a binding affinity close to a standard PI3Kα inhibitor copanlisib. The study concludes that the extract restricts lung cancer possibly through the PI3Kα/FOXO1 axis and thus <em>Parmelinella wallichiana</em> represents a potential resource for anti-lung cancer drug development in future.</p></div>\",\"PeriodicalId\":12147,\"journal\":{\"name\":\"Fitoterapia\",\"volume\":\"179 \",\"pages\":\"Article 106211\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fitoterapia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0367326X24003940\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367326X24003940","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Depside and depsidone-rich hydroalcoholic extract, resourced from the lichen Parmelinella wallichiana (Taylor) Elix & Hale selectively restricts Non-Small Cell Lung Cancer by modulating p53, FOXO1 and PALLADIN genes
The non-specificity of contemporary cancer therapeutics has enticed us to develop safer, anticancer alternatives from natural resources. Lichens are unique natural entities which have long been neglected for explorations in cancer therapy, despite their vast potential. Our present study aims to investigate the anti-cancer potential of a wild lichen Parmelinella wallichiana. The anti-proliferative efficacy of the lichen extracts were screened through MTT assay against a panel of cell lines and the potent hydroalcoholic extract was selected for further evaluation against the most sensitive lung-cancer cell line A549 by implementing a wide range of microscopic and flow cytometric applications. The observations suggest that the extract could selectively induce apoptosis by augmenting ROS and disrupting the mitochondrial membrane potentiality. It was also found that the lichen-induced apoptosis was regulated by two crucial tumor suppressor genes, FOXO1, and p53, along with cell cycle inhibitor p21 which ultimately resulted in robust apoptosis through the up-regulation of pro-apoptotic BAX expression. Moreover, the extract also restricted the cancer progression by down-regulating the PALLADIN expression. Further, an LC-MS-based metabolomic profile highlighted a number of depsides, depsidones and dibenzofurans, which included atranorin, physodalic acid, salazinic acid, constictic acid and usnic acid. Then, an in silico docking with these lichen-derived metabolites against the PI3Kα receptor predicted these compounds has a binding affinity close to a standard PI3Kα inhibitor copanlisib. The study concludes that the extract restricts lung cancer possibly through the PI3Kα/FOXO1 axis and thus Parmelinella wallichiana represents a potential resource for anti-lung cancer drug development in future.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.