{"title":"多种活跃的细胞力量如何共同调节伤口形状的演变?","authors":"Qianchun Wang , Shijie He , Baohua Ji","doi":"10.1016/j.jmps.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><p>Wound closure is a fundamental procedure in many physiological and pathological processes, driven by multiple active cellular forces. In the closure process the wound shape can evolve into round, oval, or slit. However, the underlying mechanisms that determine the mechanical strategies of wound shape evolution are unclear. To understand how these active forces co-regulate wound shapes, we constructed a novel complex variable method-based mechanical model and obtained the stress field and free energy of cell layer with arbitrary wound shape. Our results revealed that there was a stress-driven cell polarization and arrangement around the wound under the cooperative regulation of the tissue pretension, cell protrusion stress and actomyosin ring tension that drove the direction of cell polarization and arrangement for the wound closure. In addition, a 3D phase diagram was obtained from minimizing the free energy of the cell layer that illustrates how the different active cellular forces co-regulate the wound shape evolution. In general, large cellular protrusion induces the evolution of the wound toward slit shape, and strong and medium contractions of the actomyosin ring correspond to the evolution toward oval shape and round shape, respectively. This study reveals a critical mechanism by which living organisms actively control complex processes via the coordination of multiple active cellular forces in tissue repair and development.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105864"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do multiple active cellular forces co-regulate wound shape evolution?\",\"authors\":\"Qianchun Wang , Shijie He , Baohua Ji\",\"doi\":\"10.1016/j.jmps.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wound closure is a fundamental procedure in many physiological and pathological processes, driven by multiple active cellular forces. In the closure process the wound shape can evolve into round, oval, or slit. However, the underlying mechanisms that determine the mechanical strategies of wound shape evolution are unclear. To understand how these active forces co-regulate wound shapes, we constructed a novel complex variable method-based mechanical model and obtained the stress field and free energy of cell layer with arbitrary wound shape. Our results revealed that there was a stress-driven cell polarization and arrangement around the wound under the cooperative regulation of the tissue pretension, cell protrusion stress and actomyosin ring tension that drove the direction of cell polarization and arrangement for the wound closure. In addition, a 3D phase diagram was obtained from minimizing the free energy of the cell layer that illustrates how the different active cellular forces co-regulate the wound shape evolution. In general, large cellular protrusion induces the evolution of the wound toward slit shape, and strong and medium contractions of the actomyosin ring correspond to the evolution toward oval shape and round shape, respectively. This study reveals a critical mechanism by which living organisms actively control complex processes via the coordination of multiple active cellular forces in tissue repair and development.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105864\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003302\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003302","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
How do multiple active cellular forces co-regulate wound shape evolution?
Wound closure is a fundamental procedure in many physiological and pathological processes, driven by multiple active cellular forces. In the closure process the wound shape can evolve into round, oval, or slit. However, the underlying mechanisms that determine the mechanical strategies of wound shape evolution are unclear. To understand how these active forces co-regulate wound shapes, we constructed a novel complex variable method-based mechanical model and obtained the stress field and free energy of cell layer with arbitrary wound shape. Our results revealed that there was a stress-driven cell polarization and arrangement around the wound under the cooperative regulation of the tissue pretension, cell protrusion stress and actomyosin ring tension that drove the direction of cell polarization and arrangement for the wound closure. In addition, a 3D phase diagram was obtained from minimizing the free energy of the cell layer that illustrates how the different active cellular forces co-regulate the wound shape evolution. In general, large cellular protrusion induces the evolution of the wound toward slit shape, and strong and medium contractions of the actomyosin ring correspond to the evolution toward oval shape and round shape, respectively. This study reveals a critical mechanism by which living organisms actively control complex processes via the coordination of multiple active cellular forces in tissue repair and development.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.