{"title":"通过基于 Stakelberg 的博弈模型解决多目标鲁棒优化问题","authors":"Adham Salih, Erella Eisenstadt Matalon","doi":"10.1016/j.swevo.2024.101734","DOIUrl":null,"url":null,"abstract":"<div><p>Real-world multi-objective engineering problems frequently involve uncertainties stemming from environmental factors, production inaccuracies, and other sources. A critical aspect of addressing these problems, termed Multi-Objective Robust Optimization (MORO) problems, is the development of solutions that are both optimal and resilient to uncertainties. This paper proposes addressing these uncertainties through the application of Stackelberg game models, a novel approach involving the interaction of two players. The Leader searches for optimal and robust solutions and the Follower generates uncertainties based on the Leader’s chosen solutions. The Follower seeks to tackle the most challenging uncertainties associated with the Leader’s candidate solutions. Additionally, this paper introduces a novel metric to assess the robustness of a given set of solutions concerning specified uncertainties.</p><p>Based on the proposed approach, a co-evolutionary algorithm is developed. A numerical study is then conducted to evaluate the algorithm by comparing its performance with those obtained by four benchmark algorithms on nine benchmark MORO problems. The numerical study also aims to assess its sensitivity to run parameter variations. The experimental results demonstrate the proposed approach’s effectiveness in identifying a non-dominated robust set of solutions.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101734"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving multi-objective robust optimization problems via Stakelberg-based game model\",\"authors\":\"Adham Salih, Erella Eisenstadt Matalon\",\"doi\":\"10.1016/j.swevo.2024.101734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-world multi-objective engineering problems frequently involve uncertainties stemming from environmental factors, production inaccuracies, and other sources. A critical aspect of addressing these problems, termed Multi-Objective Robust Optimization (MORO) problems, is the development of solutions that are both optimal and resilient to uncertainties. This paper proposes addressing these uncertainties through the application of Stackelberg game models, a novel approach involving the interaction of two players. The Leader searches for optimal and robust solutions and the Follower generates uncertainties based on the Leader’s chosen solutions. The Follower seeks to tackle the most challenging uncertainties associated with the Leader’s candidate solutions. Additionally, this paper introduces a novel metric to assess the robustness of a given set of solutions concerning specified uncertainties.</p><p>Based on the proposed approach, a co-evolutionary algorithm is developed. A numerical study is then conducted to evaluate the algorithm by comparing its performance with those obtained by four benchmark algorithms on nine benchmark MORO problems. The numerical study also aims to assess its sensitivity to run parameter variations. The experimental results demonstrate the proposed approach’s effectiveness in identifying a non-dominated robust set of solutions.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101734\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002724\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002724","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Solving multi-objective robust optimization problems via Stakelberg-based game model
Real-world multi-objective engineering problems frequently involve uncertainties stemming from environmental factors, production inaccuracies, and other sources. A critical aspect of addressing these problems, termed Multi-Objective Robust Optimization (MORO) problems, is the development of solutions that are both optimal and resilient to uncertainties. This paper proposes addressing these uncertainties through the application of Stackelberg game models, a novel approach involving the interaction of two players. The Leader searches for optimal and robust solutions and the Follower generates uncertainties based on the Leader’s chosen solutions. The Follower seeks to tackle the most challenging uncertainties associated with the Leader’s candidate solutions. Additionally, this paper introduces a novel metric to assess the robustness of a given set of solutions concerning specified uncertainties.
Based on the proposed approach, a co-evolutionary algorithm is developed. A numerical study is then conducted to evaluate the algorithm by comparing its performance with those obtained by four benchmark algorithms on nine benchmark MORO problems. The numerical study also aims to assess its sensitivity to run parameter variations. The experimental results demonstrate the proposed approach’s effectiveness in identifying a non-dominated robust set of solutions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.