{"title":"四阶抛物问题的无稳定子弱 Galerkin 方法与隐式 θ 方案","authors":"Shanshan Gu, Fuchang Huo, Huifang Zhou","doi":"10.1016/j.cnsns.2024.108349","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we solve the fourth-order parabolic problem by combining the implicit <span><math><mi>θ</mi></math></span>-schemes in time for <span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> with the stabilizer free weak Galerkin (SFWG) method. The semi-discrete and full-discrete numerical schemes are proposed. And specifically, the full-discrete scheme is a first-order backward Euler scheme when <span><math><mrow><mi>θ</mi><mo>=</mo><mn>1</mn></mrow></math></span>, and a second-order Crank–Nicolson scheme for <span><math><mrow><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Then, we determine the optimal convergence orders of the error in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms after analyzing the well-posedness of the schemes. The theoretical findings are validated by numerical experiments.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005343/pdfft?md5=0ee5d7ab855fdd68460615649e606c70&pid=1-s2.0-S1007570424005343-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A stabilizer free weak Galerkin method with implicit θ-schemes for fourth order parabolic problems\",\"authors\":\"Shanshan Gu, Fuchang Huo, Huifang Zhou\",\"doi\":\"10.1016/j.cnsns.2024.108349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we solve the fourth-order parabolic problem by combining the implicit <span><math><mi>θ</mi></math></span>-schemes in time for <span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> with the stabilizer free weak Galerkin (SFWG) method. The semi-discrete and full-discrete numerical schemes are proposed. And specifically, the full-discrete scheme is a first-order backward Euler scheme when <span><math><mrow><mi>θ</mi><mo>=</mo><mn>1</mn></mrow></math></span>, and a second-order Crank–Nicolson scheme for <span><math><mrow><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Then, we determine the optimal convergence orders of the error in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms after analyzing the well-posedness of the schemes. The theoretical findings are validated by numerical experiments.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005343/pdfft?md5=0ee5d7ab855fdd68460615649e606c70&pid=1-s2.0-S1007570424005343-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005343\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005343","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A stabilizer free weak Galerkin method with implicit θ-schemes for fourth order parabolic problems
In this study, we solve the fourth-order parabolic problem by combining the implicit -schemes in time for with the stabilizer free weak Galerkin (SFWG) method. The semi-discrete and full-discrete numerical schemes are proposed. And specifically, the full-discrete scheme is a first-order backward Euler scheme when , and a second-order Crank–Nicolson scheme for . Then, we determine the optimal convergence orders of the error in the and norms after analyzing the well-posedness of the schemes. The theoretical findings are validated by numerical experiments.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.