在重力和构型力作用下,在刚性套筒中部分滑动的柔性杆的非线性动力学特性

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"在重力和构型力作用下,在刚性套筒中部分滑动的柔性杆的非线性动力学特性","authors":"","doi":"10.1016/j.jmps.2024.105854","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate various methods of analyzing systems with moving boundaries, using as an example a flexible rod sliding in an ideal frictionless sleeve in the field of gravity. Special attention is paid to the configurational force acting on the rod at the sleeve opening and thus determining the rod’s dynamics. The non-material kinematic description used in simulations is based on the re-parametrization of the Lagrangian arc length coordinate. The variational formulation uses the energy expressions written for the entire rod, comprising the free segment and the one inside the sleeve. A novel finite element scheme is efficient for highly flexible rods, which may undergo complete ejection. A simplified two degrees of freedom model, which accelerates simulations, shows a good agreement as the bending stiffness increases. An analytical study using Hamiltonian mechanics exploits the separation of variables into fast oscillations and slow axial motion. The adiabatic invariant approach leads to approximate closed-form solutions for the slow dynamics and yields the maximum injection depth of the rod into the sleeve.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002250962400320X/pdfft?md5=7ce5bf344c92408a2f241bbbeb8c8ca3&pid=1-s2.0-S002250962400320X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics of a flexible rod partially sliding in a rigid sleeve under the action of gravity and configurational force\",\"authors\":\"\",\"doi\":\"10.1016/j.jmps.2024.105854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate various methods of analyzing systems with moving boundaries, using as an example a flexible rod sliding in an ideal frictionless sleeve in the field of gravity. Special attention is paid to the configurational force acting on the rod at the sleeve opening and thus determining the rod’s dynamics. The non-material kinematic description used in simulations is based on the re-parametrization of the Lagrangian arc length coordinate. The variational formulation uses the energy expressions written for the entire rod, comprising the free segment and the one inside the sleeve. A novel finite element scheme is efficient for highly flexible rods, which may undergo complete ejection. A simplified two degrees of freedom model, which accelerates simulations, shows a good agreement as the bending stiffness increases. An analytical study using Hamiltonian mechanics exploits the separation of variables into fast oscillations and slow axial motion. The adiabatic invariant approach leads to approximate closed-form solutions for the slow dynamics and yields the maximum injection depth of the rod into the sleeve.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002250962400320X/pdfft?md5=7ce5bf344c92408a2f241bbbeb8c8ca3&pid=1-s2.0-S002250962400320X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002250962400320X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962400320X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们以一根在重力场中在理想无摩擦套筒中滑动的柔性杆为例,研究了分析具有移动边界的系统的各种方法。我们特别关注了套筒开口处作用在杆上的构型力,它决定了杆的动态。模拟中使用的非物质运动学描述基于拉格朗日弧长坐标的重新参数化。变分公式使用的是整个杆(包括自由段和套筒内段)的能量表达式。新颖的有限元方案对可能发生完全弹射的高弹性杆件非常有效。简化的双自由度模型可加速模拟,随着弯曲刚度的增加,该模型显示出良好的一致性。利用哈密顿力学进行的分析研究将变量分为快速振荡和慢速轴向运动。绝热不变量方法得出了慢速动力学的近似闭式解,并得出了杆进入套筒的最大喷射深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dynamics of a flexible rod partially sliding in a rigid sleeve under the action of gravity and configurational force

We investigate various methods of analyzing systems with moving boundaries, using as an example a flexible rod sliding in an ideal frictionless sleeve in the field of gravity. Special attention is paid to the configurational force acting on the rod at the sleeve opening and thus determining the rod’s dynamics. The non-material kinematic description used in simulations is based on the re-parametrization of the Lagrangian arc length coordinate. The variational formulation uses the energy expressions written for the entire rod, comprising the free segment and the one inside the sleeve. A novel finite element scheme is efficient for highly flexible rods, which may undergo complete ejection. A simplified two degrees of freedom model, which accelerates simulations, shows a good agreement as the bending stiffness increases. An analytical study using Hamiltonian mechanics exploits the separation of variables into fast oscillations and slow axial motion. The adiabatic invariant approach leads to approximate closed-form solutions for the slow dynamics and yields the maximum injection depth of the rod into the sleeve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信