Li Li , Bing Liu , Haorui Zhang , Chen Wang , Likang Sun , Yue Zhang , Lei Song , Yingli Yu , Kun ZHOU
{"title":"4-苯基丁酸通过抑制 ERS 和重建小鼠线粒体融合-分裂平衡来抑制补骨脂素诱导的肝毒性","authors":"Li Li , Bing Liu , Haorui Zhang , Chen Wang , Likang Sun , Yue Zhang , Lei Song , Yingli Yu , Kun ZHOU","doi":"10.1016/j.tox.2024.153954","DOIUrl":null,"url":null,"abstract":"<div><p>Psoralen is a main active molecule of the traditional Chinese herb medicine <em>Fructus Psoraleae</em>. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.</p></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"509 ","pages":"Article 153954"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Phenylbutyric acid suppresses psoralen-induced hepatotoxicity by inhibiting ERS and reestablishing mitochondrial fusion-fission balance in mice\",\"authors\":\"Li Li , Bing Liu , Haorui Zhang , Chen Wang , Likang Sun , Yue Zhang , Lei Song , Yingli Yu , Kun ZHOU\",\"doi\":\"10.1016/j.tox.2024.153954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Psoralen is a main active molecule of the traditional Chinese herb medicine <em>Fructus Psoraleae</em>. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.</p></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"509 \",\"pages\":\"Article 153954\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X2400235X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X2400235X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
4-Phenylbutyric acid suppresses psoralen-induced hepatotoxicity by inhibiting ERS and reestablishing mitochondrial fusion-fission balance in mice
Psoralen is a main active molecule of the traditional Chinese herb medicine Fructus Psoraleae. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.