生物质各向异性颗粒快速热解过程中的初级气溶胶喷射建模

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING
Mario A. Sánchez , Juan C. Maya , Farid Chejne , Brennan Pecha , Adriana M. Quinchía-Figueroa , Nevis A. Ruiz Márquez , Peter Ciesielski
{"title":"生物质各向异性颗粒快速热解过程中的初级气溶胶喷射建模","authors":"Mario A. Sánchez ,&nbsp;Juan C. Maya ,&nbsp;Farid Chejne ,&nbsp;Brennan Pecha ,&nbsp;Adriana M. Quinchía-Figueroa ,&nbsp;Nevis A. Ruiz Márquez ,&nbsp;Peter Ciesielski","doi":"10.1016/j.biombioe.2024.107376","DOIUrl":null,"url":null,"abstract":"<div><p>A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m<sup>2</sup>.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.</p></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107376"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the ejection of primary aerosols during the fast pyrolysis of biomass anisotropic particles\",\"authors\":\"Mario A. Sánchez ,&nbsp;Juan C. Maya ,&nbsp;Farid Chejne ,&nbsp;Brennan Pecha ,&nbsp;Adriana M. Quinchía-Figueroa ,&nbsp;Nevis A. Ruiz Márquez ,&nbsp;Peter Ciesielski\",\"doi\":\"10.1016/j.biombioe.2024.107376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m<sup>2</sup>.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.</p></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"190 \",\"pages\":\"Article 107376\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424003295\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003295","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

提出了各向异性生物质颗粒快速热解模型,该模型考虑了液态中间相(metaplast)内的气泡动力学以及从该相喷出的气溶胶。该模型采用了种群平衡方程和矩量法来估算气溶胶喷射的产生率和粒度分布,并结合了详细的 CRECK 反应机制,还考虑了各向异性生物质微观结构对质量和能量在颗粒内部传输的影响。该研究调查了颗粒大小、加热速率(传热系数)和木质纤维素成分对气溶胶喷射的影响。该模型预测,在高加热速率下(对流传热系数为 359 W/m2.K),对于小颗粒(直径 1 毫米,长度 4 毫米),气溶胶对生物油中重馏分产量的贡献率超过 20%。该模型可以预测气溶胶的粒度分布和表面积,表明在气泡产生和气溶胶喷射速率增加时,气泡的平均粒度为 20 μm,气溶胶的平均粒度为 5 μm。这些发现与之前的实验结果一致,并为今后模拟气溶胶通过反应器时的粒子外反应提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling the ejection of primary aerosols during the fast pyrolysis of biomass anisotropic particles

A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m2.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信