Temperley-Lieb 代数的半正态形式

IF 0.8 2区 数学 Q2 MATHEMATICS
Katherine Ormeño Bastías , Steen Ryom-Hansen
{"title":"Temperley-Lieb 代数的半正态形式","authors":"Katherine Ormeño Bastías ,&nbsp;Steen Ryom-Hansen","doi":"10.1016/j.jalgebra.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> be the rational Temperley-Lieb algebra, with loop parameter 2. In the first part of the paper we study the seminormal idempotents <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> for <span><math><mi>t</mi></math></span> running over two-column standard tableaux. Our main result is here a concrete combinatorial construction of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> using Jones-Wenzl idempotents <span><math><msub><mrow><mi>JW</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> where <span><math><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>.</p><p>In the second part of the paper we consider the Temperley-Lieb algebra <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. The KLR-approach to <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> gives rise to an action of a symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, for some <span><math><mi>m</mi><mo>&lt;</mo><mi>n</mi></math></span>. We show that the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>'s from the first part of the paper are simultaneous eigenvectors for the associated Jucys-Murphy elements for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. This leads to a KLR-interpretation of the <em>p</em>-Jones-Wenzl idempotent <span><math><mmultiscripts><mrow><mi>JW</mi></mrow><mrow><mi>n</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mi>p</mi></mrow></mmultiscripts></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, that was introduced recently by Burull, Libedinsky and Sentinelli.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seminormal forms for the Temperley-Lieb algebra\",\"authors\":\"Katherine Ormeño Bastías ,&nbsp;Steen Ryom-Hansen\",\"doi\":\"10.1016/j.jalgebra.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> be the rational Temperley-Lieb algebra, with loop parameter 2. In the first part of the paper we study the seminormal idempotents <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> for <span><math><mi>t</mi></math></span> running over two-column standard tableaux. Our main result is here a concrete combinatorial construction of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> using Jones-Wenzl idempotents <span><math><msub><mrow><mi>JW</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> where <span><math><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>.</p><p>In the second part of the paper we consider the Temperley-Lieb algebra <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. The KLR-approach to <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> gives rise to an action of a symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, for some <span><math><mi>m</mi><mo>&lt;</mo><mi>n</mi></math></span>. We show that the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>'s from the first part of the paper are simultaneous eigenvectors for the associated Jucys-Murphy elements for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. This leads to a KLR-interpretation of the <em>p</em>-Jones-Wenzl idempotent <span><math><mmultiscripts><mrow><mi>JW</mi></mrow><mrow><mi>n</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mi>p</mi></mrow></mmultiscripts></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, that was introduced recently by Burull, Libedinsky and Sentinelli.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004903\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 TLnQ 是有理滕伯里-李布代数,循环参数为 2。在本文的第一部分,我们研究了 TLnQ 中运行于两列标准表格的 t 的半正态幂级数 Et。在论文的第二部分,我们考虑了有限域 Fp 上的 Temperley-Lieb 代数 TLnFp,其中 p>2。对于某个 m<n,TLnFp 的 KLR 方法产生了对称群 Sm 对 TLnFp 的作用。我们证明,本文第一部分的 Et 是 Sm 的相关 Jucys-Murphy 元素的同时特征向量。这引出了 Burull、Libedinsky 和 Sentinelli 最近提出的 TLnFp 的 p-Jones-Wenzl 瞬态 JWnp 的 KLR 解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seminormal forms for the Temperley-Lieb algebra

Let TLnQ be the rational Temperley-Lieb algebra, with loop parameter 2. In the first part of the paper we study the seminormal idempotents Et for TLnQ for t running over two-column standard tableaux. Our main result is here a concrete combinatorial construction of Et using Jones-Wenzl idempotents JWk for TLkQ where kn.

In the second part of the paper we consider the Temperley-Lieb algebra TLnFp over the finite field Fp, where p>2. The KLR-approach to TLnFp gives rise to an action of a symmetric group Sm on TLnFp, for some m<n. We show that the Et's from the first part of the paper are simultaneous eigenvectors for the associated Jucys-Murphy elements for Sm. This leads to a KLR-interpretation of the p-Jones-Wenzl idempotent JWnp for TLnFp, that was introduced recently by Burull, Libedinsky and Sentinelli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信