变异损伤模型:断裂的新型一致方法

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"变异损伤模型:断裂的新型一致方法","authors":"","doi":"10.1016/j.compstruc.2024.107518","DOIUrl":null,"url":null,"abstract":"<div><p>The computational modeling of fractures in solids using damage mechanics faces challenge when dealing with complex crack topologies. One effective approach to address this challenge is by reformulating damage mechanics within a variational framework. In this paper, we present a novel variational damage model that incorporates a threshold value to prevent damage initiation at low energy levels. The proposed model defines fracture energy density (<span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>) and damage field (<em>s</em>) based on the energy density (<em>ϕ</em>), crack energy release rate (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>), and crack length scale (<em>ℓ</em>). Specifically, if <span><math><mi>ϕ</mi><mo>≤</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow></mfrac></math></span>, then <span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mi>ϕ</mi></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>0</mn></math></span>; otherwise, <span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mo>−</mo><mfrac><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mn>4</mn><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mi>ℓ</mi></mrow></mfrac></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></mfrac></math></span>. Furthermore, we extend the model with a threshold value to a higher-order version. Utilizing this functional, we derive the governing equation for fractures that evolve automatically with ease. The formulation can be seamlessly integrated into conventional finite element methods for elastic solids with minimal modifications. The proposed formulation offers sharper crack interfaces compared to phase field methods using the same mesh density. We demonstrate the capabilities of our approach through representative numerical examples in both 2D and 3D, including static fracture problems, cohesive fractures, and dynamic fractures. The open-source code is available on GitHub via the link <span><span>https://github.com/hl-ren/vdm</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002475/pdfft?md5=0b234ac467f002675d6571c60839763f&pid=1-s2.0-S0045794924002475-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Variational damage model: A novel consistent approach to fracture\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruc.2024.107518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The computational modeling of fractures in solids using damage mechanics faces challenge when dealing with complex crack topologies. One effective approach to address this challenge is by reformulating damage mechanics within a variational framework. In this paper, we present a novel variational damage model that incorporates a threshold value to prevent damage initiation at low energy levels. The proposed model defines fracture energy density (<span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>) and damage field (<em>s</em>) based on the energy density (<em>ϕ</em>), crack energy release rate (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>), and crack length scale (<em>ℓ</em>). Specifically, if <span><math><mi>ϕ</mi><mo>≤</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow></mfrac></math></span>, then <span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mi>ϕ</mi></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>0</mn></math></span>; otherwise, <span><math><mover><mrow><mi>ϕ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mo>−</mo><mfrac><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mn>4</mn><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mi>ℓ</mi></mrow></mfrac></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></mfrac></math></span>. Furthermore, we extend the model with a threshold value to a higher-order version. Utilizing this functional, we derive the governing equation for fractures that evolve automatically with ease. The formulation can be seamlessly integrated into conventional finite element methods for elastic solids with minimal modifications. The proposed formulation offers sharper crack interfaces compared to phase field methods using the same mesh density. We demonstrate the capabilities of our approach through representative numerical examples in both 2D and 3D, including static fracture problems, cohesive fractures, and dynamic fractures. The open-source code is available on GitHub via the link <span><span>https://github.com/hl-ren/vdm</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002475/pdfft?md5=0b234ac467f002675d6571c60839763f&pid=1-s2.0-S0045794924002475-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002475\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002475","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在处理复杂的裂纹拓扑结构时,利用损伤力学对固体裂纹进行计算建模面临挑战。应对这一挑战的有效方法之一是在变分框架内重新制定损伤力学。在本文中,我们提出了一种新颖的变分损伤模型,该模型包含一个阈值,以防止在低能量水平下发生损伤。该模型根据能量密度 (j)、裂纹能量释放率 (Gc) 和裂纹长度尺度 (ℓ),定义了断裂能量密度 (ϕ˜) 和损伤场 (s)。具体来说,如果 ϕ≤Gc2ℓ ,则 ϕ˜=ϕ ,s=0;否则,ϕ˜=-Gc24ℓ21ϕ+Gcℓ,s=1-Gc2ℓ1ϕ。此外,我们还将带有阈值的模型扩展为高阶版本。利用该函数,我们可以轻松推导出自动演化的裂缝控制方程。只需稍加修改,该公式就能无缝集成到弹性固体的传统有限元方法中。与使用相同网格密度的相场方法相比,所提出的公式能提供更清晰的裂缝界面。我们通过具有代表性的二维和三维数值示例展示了我们方法的能力,包括静态断裂问题、内聚断裂和动态断裂。开源代码可通过链接 https://github.com/hl-ren/vdm 在 GitHub 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational damage model: A novel consistent approach to fracture

The computational modeling of fractures in solids using damage mechanics faces challenge when dealing with complex crack topologies. One effective approach to address this challenge is by reformulating damage mechanics within a variational framework. In this paper, we present a novel variational damage model that incorporates a threshold value to prevent damage initiation at low energy levels. The proposed model defines fracture energy density (ϕ˜) and damage field (s) based on the energy density (ϕ), crack energy release rate (Gc), and crack length scale (). Specifically, if ϕGc2, then ϕ˜=ϕ and s=0; otherwise, ϕ˜=Gc2421ϕ+Gc and s=1Gc21ϕ. Furthermore, we extend the model with a threshold value to a higher-order version. Utilizing this functional, we derive the governing equation for fractures that evolve automatically with ease. The formulation can be seamlessly integrated into conventional finite element methods for elastic solids with minimal modifications. The proposed formulation offers sharper crack interfaces compared to phase field methods using the same mesh density. We demonstrate the capabilities of our approach through representative numerical examples in both 2D and 3D, including static fracture problems, cohesive fractures, and dynamic fractures. The open-source code is available on GitHub via the link https://github.com/hl-ren/vdm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信