{"title":"用于智能手机充电热管理的 GO/TiO2@n-octadecane 微胶囊的合成与优化","authors":"","doi":"10.1016/j.applthermaleng.2024.124409","DOIUrl":null,"url":null,"abstract":"<div><p>To reduce the charging temperature of smartphones effectively, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were prepared in this study. Various testing methods were used to analyze the thermal performance of microcapsules. To achieve maximum enthalpy of phase change, various preparation conditions for the preparation process were optimized. The GO was doped into the optimized microencapsulated phase change materials for further analysis. Moreover, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were used for the thermal management of smartphone charging. GO was attached to the surface of microcapsules, enhancing the thermal conductivity. Microcapsules were physically encapsulated without any chemical reactions. The enthalpies of microcapsules decreased with the proportion of GO, while the thermal conductivity increased. The prepared GO/TiO<sub>2</sub>@n-octadecane microcapsules had excellent thermal cycling stability and fire resistance. The GO could reduce the mass loss of microcapsules in high temperatures. Microencapsulated phase change materials containing 0 wt%, 1 wt%, 2 wt%, and 3 wt% GO had an excellent ability to reduce the charging temperature of smartphones, which could reduce the peak charging temperature of smartphones by 2.9, 3.1, 2.7, and 2.5 ℃, respectively. Microcapsules containing 1 wt% GO had a large enthalpy of phase transition and high thermal conductivity, which could most effectively reduce the peak charging temperature of the smartphone. Therefore, microcapsules with 1 wt% GO were the optimal microcapsules for the thermal management of smartphone charging.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and optimization of GO/TiO2@n-octadecane microcapsules for thermal management of smartphone charging\",\"authors\":\"\",\"doi\":\"10.1016/j.applthermaleng.2024.124409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To reduce the charging temperature of smartphones effectively, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were prepared in this study. Various testing methods were used to analyze the thermal performance of microcapsules. To achieve maximum enthalpy of phase change, various preparation conditions for the preparation process were optimized. The GO was doped into the optimized microencapsulated phase change materials for further analysis. Moreover, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were used for the thermal management of smartphone charging. GO was attached to the surface of microcapsules, enhancing the thermal conductivity. Microcapsules were physically encapsulated without any chemical reactions. The enthalpies of microcapsules decreased with the proportion of GO, while the thermal conductivity increased. The prepared GO/TiO<sub>2</sub>@n-octadecane microcapsules had excellent thermal cycling stability and fire resistance. The GO could reduce the mass loss of microcapsules in high temperatures. Microencapsulated phase change materials containing 0 wt%, 1 wt%, 2 wt%, and 3 wt% GO had an excellent ability to reduce the charging temperature of smartphones, which could reduce the peak charging temperature of smartphones by 2.9, 3.1, 2.7, and 2.5 ℃, respectively. Microcapsules containing 1 wt% GO had a large enthalpy of phase transition and high thermal conductivity, which could most effectively reduce the peak charging temperature of the smartphone. Therefore, microcapsules with 1 wt% GO were the optimal microcapsules for the thermal management of smartphone charging.</p></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124020775\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124020775","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
为了有效降低智能手机的充电温度,本研究制备了 GO/TiO2@n- 十八烷微胶囊。研究采用了多种测试方法来分析微胶囊的热性能。为了获得最大的相变焓,对制备过程中的各种制备条件进行了优化。在优化后的微胶囊相变材料中掺入了 GO,以便进一步分析。此外,GO/TiO2@n-十八烷微胶囊还被用于智能手机充电的热管理。GO 附着在微胶囊表面,增强了导热性。微胶囊是物理封装的,没有发生任何化学反应。随着 GO 比例的增加,微胶囊的热焓降低,而热导率增加。制备的 GO/TiO2@n- 十八烷微胶囊具有优异的热循环稳定性和耐火性。GO 可以减少微胶囊在高温下的质量损失。含有 0 wt%、1 wt%、2 wt% 和 3 wt% GO 的微胶囊相变材料具有优异的降低智能手机充电温度的能力,可将智能手机的峰值充电温度分别降低 2.9、3.1、2.7 和 2.5 ℃。含有 1 wt% GO 的微胶囊具有较大的相变焓和较高的热导率,能最有效地降低智能手机的峰值充电温度。因此,含有 1 wt% GO 的微胶囊是智能手机充电热管理的最佳微胶囊。
Synthesis and optimization of GO/TiO2@n-octadecane microcapsules for thermal management of smartphone charging
To reduce the charging temperature of smartphones effectively, the GO/TiO2@n-octadecane microcapsules were prepared in this study. Various testing methods were used to analyze the thermal performance of microcapsules. To achieve maximum enthalpy of phase change, various preparation conditions for the preparation process were optimized. The GO was doped into the optimized microencapsulated phase change materials for further analysis. Moreover, the GO/TiO2@n-octadecane microcapsules were used for the thermal management of smartphone charging. GO was attached to the surface of microcapsules, enhancing the thermal conductivity. Microcapsules were physically encapsulated without any chemical reactions. The enthalpies of microcapsules decreased with the proportion of GO, while the thermal conductivity increased. The prepared GO/TiO2@n-octadecane microcapsules had excellent thermal cycling stability and fire resistance. The GO could reduce the mass loss of microcapsules in high temperatures. Microencapsulated phase change materials containing 0 wt%, 1 wt%, 2 wt%, and 3 wt% GO had an excellent ability to reduce the charging temperature of smartphones, which could reduce the peak charging temperature of smartphones by 2.9, 3.1, 2.7, and 2.5 ℃, respectively. Microcapsules containing 1 wt% GO had a large enthalpy of phase transition and high thermal conductivity, which could most effectively reduce the peak charging temperature of the smartphone. Therefore, microcapsules with 1 wt% GO were the optimal microcapsules for the thermal management of smartphone charging.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.