具有 MxOy(M=铜、镍)背表面场层的基于 Cu2FeSnS4 的异质结太阳能电池:缺陷密度态和重组的影响

{"title":"具有 MxOy(M=铜、镍)背表面场层的基于 Cu2FeSnS4 的异质结太阳能电池:缺陷密度态和重组的影响","authors":"","doi":"10.1016/j.nxener.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><p>Copper-based chalcogenide quaternary semiconductors have emerged as promising candidates for next-generation photovoltaic (PV) devices, owing to their unique electronic and photonic properties coupled with environmentally friendly compositions. This study explores the potential of copper-based absorber materials, specifically Cu<sub>2</sub>FeSnS<sub>4</sub> (CFTS), as an absorber in heterojunction solar cells with Cu-/Ni-metal oxides back surface field (BSF) and SnS<sub>2</sub> buffer layers using the SCAPS-1D Simulator. Initially, we assess the performance of CFTS-absorber solar cells and compare the key photovoltaic metrics with those of other Cu-based semiconductors including CuIn<sub>x</sub>Ga<sub>(1-<em>x</em>)</sub>Se<sub>2</sub> (CIGS), Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS), Cu<sub>2</sub>CoSnS<sub>4</sub> (CCTS), Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS), Cu<sub>2</sub>BaSnS<sub>4</sub> (CBTS), Cu<sub>2</sub>MnSnS<sub>4</sub> (CMTS), to identify the most promising absorber. Subsequently, we optimize the layer properties, including active layer thickness, free-carrier concentration, bulk and interface defect density, and carrier recombination in potential CFTS. Further, we examine the impact of defects, and carrier recombination, including radiative, Shockley-Read-Hall (SRH), and Auger recombination. These detailed studies yield improved and competitive photoconversion efficiency, (<em>PCE</em>) of 27.31% (compared to 24.68%, without BSF) with open circuit voltage, (<em>V</em><sub>OC</sub>) of 1.36 V, short-circuit current density, (<em>J</em><sub>SC</sub>) of 22.28 mA/cm² and fill factor, (<em>FF</em>) of 90.47% for Cu<sub>2</sub>O, whereas the <em>PCE</em> of 26.97% with <em>V</em><sub>OC</sub> of 1.07 V, <em>J</em><sub>SC</sub> of 28.82 mA/cm² and <em>FF</em> of 86.91% for NiO<sub><em>x</em></sub> BSF layer in Au/Mo/BSF(Cu<sub>2</sub>O and NiO<sub><em>x</em></sub>)/CFTS/SnS<sub>2</sub>/ZnMgO/ZnO:Al/Pt configurations under optimized conditions. The enhanced charge separation and carrier collection efficiencies reveal the strong potential of CFTS absorber heterostructures with Cu<sub>2</sub>O/NiO<sub><em>x</em></sub>, SnS<sub>2,</sub> and bi-layer ZnMgO/ZnO:Al as BSF, buffer, and window layers, repectively, providing insights and resources for developing high-efficiency CFTS-based photovoltaic devices.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24001017/pdfft?md5=cd7236f786c699d1ab39639902d1920d&pid=1-s2.0-S2949821X24001017-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cu2FeSnS4-based heterojunction solar cells with MxOy (M=Cu, Ni)-back surface field layers: Impact of defect density states and recombination\",\"authors\":\"\",\"doi\":\"10.1016/j.nxener.2024.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copper-based chalcogenide quaternary semiconductors have emerged as promising candidates for next-generation photovoltaic (PV) devices, owing to their unique electronic and photonic properties coupled with environmentally friendly compositions. This study explores the potential of copper-based absorber materials, specifically Cu<sub>2</sub>FeSnS<sub>4</sub> (CFTS), as an absorber in heterojunction solar cells with Cu-/Ni-metal oxides back surface field (BSF) and SnS<sub>2</sub> buffer layers using the SCAPS-1D Simulator. Initially, we assess the performance of CFTS-absorber solar cells and compare the key photovoltaic metrics with those of other Cu-based semiconductors including CuIn<sub>x</sub>Ga<sub>(1-<em>x</em>)</sub>Se<sub>2</sub> (CIGS), Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS), Cu<sub>2</sub>CoSnS<sub>4</sub> (CCTS), Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS), Cu<sub>2</sub>BaSnS<sub>4</sub> (CBTS), Cu<sub>2</sub>MnSnS<sub>4</sub> (CMTS), to identify the most promising absorber. Subsequently, we optimize the layer properties, including active layer thickness, free-carrier concentration, bulk and interface defect density, and carrier recombination in potential CFTS. Further, we examine the impact of defects, and carrier recombination, including radiative, Shockley-Read-Hall (SRH), and Auger recombination. These detailed studies yield improved and competitive photoconversion efficiency, (<em>PCE</em>) of 27.31% (compared to 24.68%, without BSF) with open circuit voltage, (<em>V</em><sub>OC</sub>) of 1.36 V, short-circuit current density, (<em>J</em><sub>SC</sub>) of 22.28 mA/cm² and fill factor, (<em>FF</em>) of 90.47% for Cu<sub>2</sub>O, whereas the <em>PCE</em> of 26.97% with <em>V</em><sub>OC</sub> of 1.07 V, <em>J</em><sub>SC</sub> of 28.82 mA/cm² and <em>FF</em> of 86.91% for NiO<sub><em>x</em></sub> BSF layer in Au/Mo/BSF(Cu<sub>2</sub>O and NiO<sub><em>x</em></sub>)/CFTS/SnS<sub>2</sub>/ZnMgO/ZnO:Al/Pt configurations under optimized conditions. The enhanced charge separation and carrier collection efficiencies reveal the strong potential of CFTS absorber heterostructures with Cu<sub>2</sub>O/NiO<sub><em>x</em></sub>, SnS<sub>2,</sub> and bi-layer ZnMgO/ZnO:Al as BSF, buffer, and window layers, repectively, providing insights and resources for developing high-efficiency CFTS-based photovoltaic devices.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24001017/pdfft?md5=cd7236f786c699d1ab39639902d1920d&pid=1-s2.0-S2949821X24001017-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24001017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铜基掺杂四元半导体因其独特的电子和光子特性以及环保成分,已成为下一代光伏(PV)设备的理想候选材料。本研究利用 SCAPS-1D 模拟器,探索了铜基吸收材料(特别是 Cu2FeSnS4 (CFTS))在带有铜/镍金属氧化物背表面场(BSF)和 SnS2 缓冲层的异质结太阳能电池中作为吸收材料的潜力。首先,我们评估了 CFTS 吸收剂太阳能电池的性能,并将主要光伏指标与其他铜基半导体(包括 CuInxGa(1-x)Se2 (CIGS)、Cu2ZnSnS4 (CZTS)、Cu2CoSnS4 (CCTS)、Cu2NiSnS4 (CNTS)、Cu2BaSnS4 (CBTS)、Cu2MnSnS4 (CMTS))进行了比较,以确定最有前途的吸收剂。随后,我们优化了层的特性,包括有源层厚度、自由载流子浓度、块体和界面缺陷密度以及潜在 CFTS 中的载流子重组。此外,我们还研究了缺陷和载流子重组的影响,包括辐射、肖克利-雷德-霍尔(SRH)和奥格重组。通过这些详细研究,我们发现光电转换效率(PCE)提高到 27.31%(相比之下,不使用 BSF 时为 24.68%),开路电压(VOC)为 1.36 V,短路电流密度(JSC)为 22.而在优化条件下,Au/Mo/BSF(Cu2O 和 NiOx)/CFTS/SnS2/ZnMgO/ZnO:Al/Pt 配置的 NiOx BSF 层的 PCE 为 26.97%,VOC 为 1.07 V,JSC 为 28.82 mA/cm²,FF 为 86.91%。电荷分离和载流子收集效率的提高揭示了以 Cu2O/NiOx、SnS2 和双层 ZnMgO/ZnO:Al 分别作为 BSF 层、缓冲层和窗口层的 CFTS 吸收异质结构的巨大潜力,为开发基于 CFTS 的高效光伏器件提供了启示和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu2FeSnS4-based heterojunction solar cells with MxOy (M=Cu, Ni)-back surface field layers: Impact of defect density states and recombination

Copper-based chalcogenide quaternary semiconductors have emerged as promising candidates for next-generation photovoltaic (PV) devices, owing to their unique electronic and photonic properties coupled with environmentally friendly compositions. This study explores the potential of copper-based absorber materials, specifically Cu2FeSnS4 (CFTS), as an absorber in heterojunction solar cells with Cu-/Ni-metal oxides back surface field (BSF) and SnS2 buffer layers using the SCAPS-1D Simulator. Initially, we assess the performance of CFTS-absorber solar cells and compare the key photovoltaic metrics with those of other Cu-based semiconductors including CuInxGa(1-x)Se2 (CIGS), Cu2ZnSnS4 (CZTS), Cu2CoSnS4 (CCTS), Cu2NiSnS4 (CNTS), Cu2BaSnS4 (CBTS), Cu2MnSnS4 (CMTS), to identify the most promising absorber. Subsequently, we optimize the layer properties, including active layer thickness, free-carrier concentration, bulk and interface defect density, and carrier recombination in potential CFTS. Further, we examine the impact of defects, and carrier recombination, including radiative, Shockley-Read-Hall (SRH), and Auger recombination. These detailed studies yield improved and competitive photoconversion efficiency, (PCE) of 27.31% (compared to 24.68%, without BSF) with open circuit voltage, (VOC) of 1.36 V, short-circuit current density, (JSC) of 22.28 mA/cm² and fill factor, (FF) of 90.47% for Cu2O, whereas the PCE of 26.97% with VOC of 1.07 V, JSC of 28.82 mA/cm² and FF of 86.91% for NiOx BSF layer in Au/Mo/BSF(Cu2O and NiOx)/CFTS/SnS2/ZnMgO/ZnO:Al/Pt configurations under optimized conditions. The enhanced charge separation and carrier collection efficiencies reveal the strong potential of CFTS absorber heterostructures with Cu2O/NiOx, SnS2, and bi-layer ZnMgO/ZnO:Al as BSF, buffer, and window layers, repectively, providing insights and resources for developing high-efficiency CFTS-based photovoltaic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信