Zhenzheng Liu , Bo Li , Tengfei Yao , Mengkai Sun , Yaping Wang , Liangliang Niu , Yuan Du
{"title":"基于响应面方法学-正交试验的缓释盐储存融雪骨料制备工艺及其缓释性能优化研究","authors":"Zhenzheng Liu , Bo Li , Tengfei Yao , Mengkai Sun , Yaping Wang , Liangliang Niu , Yuan Du","doi":"10.1016/j.conbuildmat.2024.138356","DOIUrl":null,"url":null,"abstract":"<div><p>Salt storage asphalt pavement can effectively alleviate the problem of pavement snow and ice in winter, and ensure the driving safety and transportation capacity. Salt storage type snow melting and ice suppression materials are the key to the function of salt storage asphalt pavement. The purpose of this paper is to develop a snow-melting and ice suppression aggregate with outstanding sustained release performance by coupling the orthogonal test and response surface method. Three process variables, such as adsorption time, concentration of snow-melting salt solution and mass ratio of porous aggregate to snow melting salt, were optimized by orthogonal test and response surface method. Then, the preparation process of salt storage aggregate was determined by adsorption performance test. Finally, the physical and mechanical properties, slow release performance and ice melting performance of the slow-release salt-storage snowmelt aggregate were tested. The results showed that the optimum preparation process of salt-storing aggregate was the adsorption time of 12 h, concentration of snow-melting agent solution of 30 %, and mass ratio of snow-melting salt to salt-storing carrier of 0.5:1. The optimum mass ratio of salt-storing aggregate to wrapping material (phenolic resin) was 1:2.5. The salt release amount of the slow-release salt-storing snowmelt aggregate at 180 min was about 43.75 % lower than that of the unwrapped salt-storing aggregate. At the same time, 5 g of slow-release salt-storing snow-melting aggregate had a melting ice amount of 0.9 g at a temperature of −5°C. In addition, the slow-release salt-storing snow-melting aggregates wrapped with different proportions of asphalt could release salt, and its conductivity was at least 1200 μs/cm in the stable stage.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"449 ","pages":"Article 138356"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of slow-release salt storage snowmelt aggregate preparation process and its slow-release performance based on response surface methodology-orthogonal test\",\"authors\":\"Zhenzheng Liu , Bo Li , Tengfei Yao , Mengkai Sun , Yaping Wang , Liangliang Niu , Yuan Du\",\"doi\":\"10.1016/j.conbuildmat.2024.138356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Salt storage asphalt pavement can effectively alleviate the problem of pavement snow and ice in winter, and ensure the driving safety and transportation capacity. Salt storage type snow melting and ice suppression materials are the key to the function of salt storage asphalt pavement. The purpose of this paper is to develop a snow-melting and ice suppression aggregate with outstanding sustained release performance by coupling the orthogonal test and response surface method. Three process variables, such as adsorption time, concentration of snow-melting salt solution and mass ratio of porous aggregate to snow melting salt, were optimized by orthogonal test and response surface method. Then, the preparation process of salt storage aggregate was determined by adsorption performance test. Finally, the physical and mechanical properties, slow release performance and ice melting performance of the slow-release salt-storage snowmelt aggregate were tested. The results showed that the optimum preparation process of salt-storing aggregate was the adsorption time of 12 h, concentration of snow-melting agent solution of 30 %, and mass ratio of snow-melting salt to salt-storing carrier of 0.5:1. The optimum mass ratio of salt-storing aggregate to wrapping material (phenolic resin) was 1:2.5. The salt release amount of the slow-release salt-storing snowmelt aggregate at 180 min was about 43.75 % lower than that of the unwrapped salt-storing aggregate. At the same time, 5 g of slow-release salt-storing snow-melting aggregate had a melting ice amount of 0.9 g at a temperature of −5°C. In addition, the slow-release salt-storing snow-melting aggregates wrapped with different proportions of asphalt could release salt, and its conductivity was at least 1200 μs/cm in the stable stage.</p></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"449 \",\"pages\":\"Article 138356\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824034986\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824034986","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimization of slow-release salt storage snowmelt aggregate preparation process and its slow-release performance based on response surface methodology-orthogonal test
Salt storage asphalt pavement can effectively alleviate the problem of pavement snow and ice in winter, and ensure the driving safety and transportation capacity. Salt storage type snow melting and ice suppression materials are the key to the function of salt storage asphalt pavement. The purpose of this paper is to develop a snow-melting and ice suppression aggregate with outstanding sustained release performance by coupling the orthogonal test and response surface method. Three process variables, such as adsorption time, concentration of snow-melting salt solution and mass ratio of porous aggregate to snow melting salt, were optimized by orthogonal test and response surface method. Then, the preparation process of salt storage aggregate was determined by adsorption performance test. Finally, the physical and mechanical properties, slow release performance and ice melting performance of the slow-release salt-storage snowmelt aggregate were tested. The results showed that the optimum preparation process of salt-storing aggregate was the adsorption time of 12 h, concentration of snow-melting agent solution of 30 %, and mass ratio of snow-melting salt to salt-storing carrier of 0.5:1. The optimum mass ratio of salt-storing aggregate to wrapping material (phenolic resin) was 1:2.5. The salt release amount of the slow-release salt-storing snowmelt aggregate at 180 min was about 43.75 % lower than that of the unwrapped salt-storing aggregate. At the same time, 5 g of slow-release salt-storing snow-melting aggregate had a melting ice amount of 0.9 g at a temperature of −5°C. In addition, the slow-release salt-storing snow-melting aggregates wrapped with different proportions of asphalt could release salt, and its conductivity was at least 1200 μs/cm in the stable stage.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.