{"title":"邻苯二甲酸二(2-乙基己酯)(DEHP)损害早期卵泡发育机制的新见解","authors":"","doi":"10.1016/j.ecoenv.2024.117043","DOIUrl":null,"url":null,"abstract":"<div><p>Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3–14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011199/pdfft?md5=d7f8eefc315c5e3b0085e83d6ffbec80&pid=1-s2.0-S0147651324011199-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel Insight into the mechanism of di (2-ethylhexyl) phthalate (DEHP) impairing early follicle development\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoenv.2024.117043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3–14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.</p></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011199/pdfft?md5=d7f8eefc315c5e3b0085e83d6ffbec80&pid=1-s2.0-S0147651324011199-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011199\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011199","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Novel Insight into the mechanism of di (2-ethylhexyl) phthalate (DEHP) impairing early follicle development
Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3–14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.