{"title":"母体接触草甘膦除草剂导致小鼠自闭症谱系障碍样行为中微生物群-代谢-环RNA串联的改变","authors":"","doi":"10.1016/j.ecoenv.2024.117060","DOIUrl":null,"url":null,"abstract":"<div><p>Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011369/pdfft?md5=a6488be21250d287b5d75b1ebeae3501&pid=1-s2.0-S0147651324011369-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoenv.2024.117060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.</p></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011369/pdfft?md5=a6488be21250d287b5d75b1ebeae3501&pid=1-s2.0-S0147651324011369-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011369\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011369","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice
Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.