一种新的最小二乘法,产生与算子空域正交的近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eunjung Lee, Youngmin Shin
{"title":"一种新的最小二乘法,产生与算子空域正交的近似值","authors":"Eunjung Lee,&nbsp;Youngmin Shin","doi":"10.1016/j.apnum.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel least squares approach generating approximations orthogonal to the null space of the operator\",\"authors\":\"Eunjung Lee,&nbsp;Youngmin Shin\",\"doi\":\"10.1016/j.apnum.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的最小二乘法函数,专门用于求解具有非空空间的算子的线性偏微分方程。我们的方法是将解投影到算子空空间的正交补集上,以克服传统数值方法在出现非零空成分时遇到的难题。我们描述了所提方法的理论框架,并通过数值示例对其进行了验证,结果表明,在传统方法因存在大量空空间成分而效果不佳的情况下,该方法的准确性和可用性得到了提高。总之,这种方法为具有大量空空间分量的偏微分方程提供了实用可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel least squares approach generating approximations orthogonal to the null space of the operator

We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信