针对二维非线性麦克斯韦方程的四阶 Runge-Kutta 指数时差和三角谱元法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wenting Shao , Cheng Chen
{"title":"针对二维非线性麦克斯韦方程的四阶 Runge-Kutta 指数时差和三角谱元法","authors":"Wenting Shao ,&nbsp;Cheng Chen","doi":"10.1016/j.apnum.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations\",\"authors\":\"Wenting Shao ,&nbsp;Cheng Chen\",\"doi\":\"10.1016/j.apnum.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种求解非线性麦克斯韦方程的数值方案。该离散方案在空间上基于三角谱元法(TSEM),在时间上基于指数时差四阶 Runge-Kutta 法(ETDRK4)。TSEM 具有频谱精确性和几何灵活性的优点。ETD 方法包括对控制方程的线性部分进行精确积分,然后对涉及非线性项的积分进行近似。非线性项的时间积分采用 RK4 方案。描述了 ETDRK4 方法的稳定区域。此外,还利用并改进了复平面内的等高线积分,以计算 ETDRK4 实现所需的矩阵函数。数值结果表明,我们提出的方法在空间上与基函数阶数呈指数收敛,在时间上具有四阶精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations

In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信