确保集聚区危险事件通知安全的安全协议

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sabina Szymoniak
{"title":"确保集聚区危险事件通知安全的安全协议","authors":"Sabina Szymoniak","doi":"10.1016/j.pmcj.2024.101977","DOIUrl":null,"url":null,"abstract":"<div><p>Our everyday lives cannot function without intelligent devices, which create the so-called Internet of Things networks. Internet of Things devices have various sensors and software to manage the work environment and perform specific tasks without human intervention. Internet of Things networks require appropriate security at various levels of their operation. In this article, we present a new security protocol that protects communication in IoT networks and enables interconnected devices to communicate and exchange information to increase the security of people living in urban agglomerations. The Control Station device evaluates the collected data about events that may threaten the life or health of residents and then notifies the Emergency Notification Center about it. The protocol guarantees the security of devices and transmitted data. We verified this using automatic verification technology, formal verification using Burrows, Abadi and Needham logic and informal analysis. The proposed protocol ensures mutual authentication, anonymity and revocation. Also, it is resistant to Man-in-the-middle, modification, replay and impersonation attacks. Compared to other protocols, our solution uses simple cryptographic techniques that are lightweight, stable and do not cause problems related to high communication costs. It does not require specialist equipment, so we can implement it using typical hardware. At each stage of protocol execution, communication occurs between two entities, so it does not require interaction between different entities, which may limit its adaptability in the context of interoperability.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224001020/pdfft?md5=3cef85ebf780a1e504204af1828772d5&pid=1-s2.0-S1574119224001020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Security protocol for securing notifications about dangerous events in the agglomeration\",\"authors\":\"Sabina Szymoniak\",\"doi\":\"10.1016/j.pmcj.2024.101977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our everyday lives cannot function without intelligent devices, which create the so-called Internet of Things networks. Internet of Things devices have various sensors and software to manage the work environment and perform specific tasks without human intervention. Internet of Things networks require appropriate security at various levels of their operation. In this article, we present a new security protocol that protects communication in IoT networks and enables interconnected devices to communicate and exchange information to increase the security of people living in urban agglomerations. The Control Station device evaluates the collected data about events that may threaten the life or health of residents and then notifies the Emergency Notification Center about it. The protocol guarantees the security of devices and transmitted data. We verified this using automatic verification technology, formal verification using Burrows, Abadi and Needham logic and informal analysis. The proposed protocol ensures mutual authentication, anonymity and revocation. Also, it is resistant to Man-in-the-middle, modification, replay and impersonation attacks. Compared to other protocols, our solution uses simple cryptographic techniques that are lightweight, stable and do not cause problems related to high communication costs. It does not require specialist equipment, so we can implement it using typical hardware. At each stage of protocol execution, communication occurs between two entities, so it does not require interaction between different entities, which may limit its adaptability in the context of interoperability.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574119224001020/pdfft?md5=3cef85ebf780a1e504204af1828772d5&pid=1-s2.0-S1574119224001020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224001020\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224001020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们的日常生活离不开智能设备,这些智能设备形成了所谓的物联网网络。物联网设备拥有各种传感器和软件,可在无人干预的情况下管理作业环境并执行特定任务。物联网网络在运行的各个层面都需要适当的安全性。在本文中,我们介绍了一种新的安全协议,它可以保护物联网网络中的通信,并使互联设备能够通信和交换信息,从而提高城市群中居民的安全。控制站设备对收集到的可能威胁居民生命或健康的事件数据进行评估,然后通知紧急通知中心。该协议可确保设备和传输数据的安全性。我们利用自动验证技术、使用 Burrows、Abadi 和 Needham 逻辑的正式验证以及非正式分析验证了这一点。所提出的协议可确保相互验证、匿名和撤销。此外,它还能抵御中间人攻击、修改攻击、重放攻击和冒充攻击。与其他协议相比,我们的解决方案使用了简单的加密技术,这些技术轻便、稳定,而且不会产生与高通信成本相关的问题。它不需要专业设备,因此我们可以使用一般的硬件来实现它。在协议执行的每个阶段,通信都发生在两个实体之间,因此它不需要不同实体之间的交互,这可能会限制其在互操作性方面的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Security protocol for securing notifications about dangerous events in the agglomeration

Security protocol for securing notifications about dangerous events in the agglomeration

Our everyday lives cannot function without intelligent devices, which create the so-called Internet of Things networks. Internet of Things devices have various sensors and software to manage the work environment and perform specific tasks without human intervention. Internet of Things networks require appropriate security at various levels of their operation. In this article, we present a new security protocol that protects communication in IoT networks and enables interconnected devices to communicate and exchange information to increase the security of people living in urban agglomerations. The Control Station device evaluates the collected data about events that may threaten the life or health of residents and then notifies the Emergency Notification Center about it. The protocol guarantees the security of devices and transmitted data. We verified this using automatic verification technology, formal verification using Burrows, Abadi and Needham logic and informal analysis. The proposed protocol ensures mutual authentication, anonymity and revocation. Also, it is resistant to Man-in-the-middle, modification, replay and impersonation attacks. Compared to other protocols, our solution uses simple cryptographic techniques that are lightweight, stable and do not cause problems related to high communication costs. It does not require specialist equipment, so we can implement it using typical hardware. At each stage of protocol execution, communication occurs between two entities, so it does not require interaction between different entities, which may limit its adaptability in the context of interoperability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信