{"title":"用于高效检测糖尿病前期和早期尿糖的氧化钡银基 SPR 传感器","authors":"Madhusudan Mishra , Sandipta Senapati , Archana Yadav , S.K. Tripathy","doi":"10.1016/j.sna.2024.115895","DOIUrl":null,"url":null,"abstract":"<div><p>The current work studies the impact of BaTiO<sub>3</sub> along with the various monosulfide on the sensing performance of a silver-coated surface plasmonic resonance sensor (SPR) for the noninvasive detection of glucose via urine samples. The considered monosulfides are GeS, ZnS, CdS, and CuS. After the optimization of the BaTiO<sub>3</sub> thickness to 13 nm over the silver based SPR sensor, all above mentioned monosulfides are investigated over the BaTiO<sub>3</sub> (BTO) layer individually. It is shown that GeS shows better performance compared to others. Maximum obtained sensitivity for the optimized structure (Prism (BK7)/ Ag (50 nm)/BaTiO<sub>3</sub> (13 nm)/GeS (01 Layer)/Urine sample) is 527 °/RIU (the highest ever reported to date) for urine sample refractive indices range 1.335, 1.336, 1.337, 1.338, and 1.341 for corresponding glucose concentration of 0 g/dl (non-diabetic), 0.625 g/dl (pre-diabetic), 1.25 g/dl (early diabetic), 2.5 g/dl (diabetic), and 5 g/dl (high-diabetic), respectively. The investigation produced a thorough picture of the distribution of electric fields for distinct monosulfide layers. Other investigated sensing performance parameters such as detection accuracy (DA), quality factor (QF), limit of detection (LOD) are also numerically calculated and are 0.227 deg<sup>−1</sup><sub>,</sub> 97 RIU<sup>−1</sup> and 1.25e-5 respectively. The contrast of the suggested structure to similar relevant published work demonstrates its ability to be used as an efficient label-free biosensor.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115895"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BaTiO3 boosted silver-based SPR sensor for efficient urine-glucose detection in pre-diabetic and early-diabetic stages\",\"authors\":\"Madhusudan Mishra , Sandipta Senapati , Archana Yadav , S.K. Tripathy\",\"doi\":\"10.1016/j.sna.2024.115895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current work studies the impact of BaTiO<sub>3</sub> along with the various monosulfide on the sensing performance of a silver-coated surface plasmonic resonance sensor (SPR) for the noninvasive detection of glucose via urine samples. The considered monosulfides are GeS, ZnS, CdS, and CuS. After the optimization of the BaTiO<sub>3</sub> thickness to 13 nm over the silver based SPR sensor, all above mentioned monosulfides are investigated over the BaTiO<sub>3</sub> (BTO) layer individually. It is shown that GeS shows better performance compared to others. Maximum obtained sensitivity for the optimized structure (Prism (BK7)/ Ag (50 nm)/BaTiO<sub>3</sub> (13 nm)/GeS (01 Layer)/Urine sample) is 527 °/RIU (the highest ever reported to date) for urine sample refractive indices range 1.335, 1.336, 1.337, 1.338, and 1.341 for corresponding glucose concentration of 0 g/dl (non-diabetic), 0.625 g/dl (pre-diabetic), 1.25 g/dl (early diabetic), 2.5 g/dl (diabetic), and 5 g/dl (high-diabetic), respectively. The investigation produced a thorough picture of the distribution of electric fields for distinct monosulfide layers. Other investigated sensing performance parameters such as detection accuracy (DA), quality factor (QF), limit of detection (LOD) are also numerically calculated and are 0.227 deg<sup>−1</sup><sub>,</sub> 97 RIU<sup>−1</sup> and 1.25e-5 respectively. The contrast of the suggested structure to similar relevant published work demonstrates its ability to be used as an efficient label-free biosensor.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"379 \",\"pages\":\"Article 115895\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008896\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008896","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
BaTiO3 boosted silver-based SPR sensor for efficient urine-glucose detection in pre-diabetic and early-diabetic stages
The current work studies the impact of BaTiO3 along with the various monosulfide on the sensing performance of a silver-coated surface plasmonic resonance sensor (SPR) for the noninvasive detection of glucose via urine samples. The considered monosulfides are GeS, ZnS, CdS, and CuS. After the optimization of the BaTiO3 thickness to 13 nm over the silver based SPR sensor, all above mentioned monosulfides are investigated over the BaTiO3 (BTO) layer individually. It is shown that GeS shows better performance compared to others. Maximum obtained sensitivity for the optimized structure (Prism (BK7)/ Ag (50 nm)/BaTiO3 (13 nm)/GeS (01 Layer)/Urine sample) is 527 °/RIU (the highest ever reported to date) for urine sample refractive indices range 1.335, 1.336, 1.337, 1.338, and 1.341 for corresponding glucose concentration of 0 g/dl (non-diabetic), 0.625 g/dl (pre-diabetic), 1.25 g/dl (early diabetic), 2.5 g/dl (diabetic), and 5 g/dl (high-diabetic), respectively. The investigation produced a thorough picture of the distribution of electric fields for distinct monosulfide layers. Other investigated sensing performance parameters such as detection accuracy (DA), quality factor (QF), limit of detection (LOD) are also numerically calculated and are 0.227 deg−1, 97 RIU−1 and 1.25e-5 respectively. The contrast of the suggested structure to similar relevant published work demonstrates its ability to be used as an efficient label-free biosensor.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...