Jens Duru , Benedikt Maurer , Tobias Ruff , Katarina Vulić , Julian Hengsteler , Sophie Girardin , János Vörös , Stephan J. Ihle
{"title":"模块化、灵活的开源细胞培养器系统,可移动和固定使用","authors":"Jens Duru , Benedikt Maurer , Tobias Ruff , Katarina Vulić , Julian Hengsteler , Sophie Girardin , János Vörös , Stephan J. Ihle","doi":"10.1016/j.ohx.2024.e00571","DOIUrl":null,"url":null,"abstract":"<div><p>Culturing living cells <em>in vitro</em> requires the maintenance of physiological conditions for extended periods of time. Here, we introduce a versatile and affordable incubation system, addressing the limitations of traditional incubation systems. Conventionally, stationary cell incubators maintain constant temperature and gas levels for <em>in vitro</em> cell culturing. Combining such incubators with additional lab equipment proves challenging. The presented platform offers modularity and adaptability, enabling customization to diverse experimental needs. The system includes a main unit with a user-friendly interface as well as an interchangeable incubation chamber. We present two incubation chambers targeting two completely different use cases. The first chamber, named “inkugo” facilitates the transportation of cells for up to two hours without external power and for more than a day without an external CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> source. The second chamber termed “inkubox” was designed to enable continuous electrophysiological recordings. Recordings from up to four neural cultures growing on high-density microelectrode arrays can be performed in parallel. The system’s unique feature lies in its separability of control and incubation components, allowing one control unit to manage various custom chambers. The design’s simplicity and the use of widely accessible components make the here proposed incubation system replicable for any laboratory. This platform fosters collaboration and experimentation in both decentralized and traditional laboratory settings, making it an invaluable addition to any cell culturing pipeline.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00571"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000658/pdfft?md5=c3f19fff44793f5d31353c6dd5141fbf&pid=1-s2.0-S2468067224000658-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A modular and flexible open source cell incubator system for mobile and stationary use\",\"authors\":\"Jens Duru , Benedikt Maurer , Tobias Ruff , Katarina Vulić , Julian Hengsteler , Sophie Girardin , János Vörös , Stephan J. Ihle\",\"doi\":\"10.1016/j.ohx.2024.e00571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Culturing living cells <em>in vitro</em> requires the maintenance of physiological conditions for extended periods of time. Here, we introduce a versatile and affordable incubation system, addressing the limitations of traditional incubation systems. Conventionally, stationary cell incubators maintain constant temperature and gas levels for <em>in vitro</em> cell culturing. Combining such incubators with additional lab equipment proves challenging. The presented platform offers modularity and adaptability, enabling customization to diverse experimental needs. The system includes a main unit with a user-friendly interface as well as an interchangeable incubation chamber. We present two incubation chambers targeting two completely different use cases. The first chamber, named “inkugo” facilitates the transportation of cells for up to two hours without external power and for more than a day without an external CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> source. The second chamber termed “inkubox” was designed to enable continuous electrophysiological recordings. Recordings from up to four neural cultures growing on high-density microelectrode arrays can be performed in parallel. The system’s unique feature lies in its separability of control and incubation components, allowing one control unit to manage various custom chambers. The design’s simplicity and the use of widely accessible components make the here proposed incubation system replicable for any laboratory. This platform fosters collaboration and experimentation in both decentralized and traditional laboratory settings, making it an invaluable addition to any cell culturing pipeline.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"20 \",\"pages\":\"Article e00571\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000658/pdfft?md5=c3f19fff44793f5d31353c6dd5141fbf&pid=1-s2.0-S2468067224000658-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A modular and flexible open source cell incubator system for mobile and stationary use
Culturing living cells in vitro requires the maintenance of physiological conditions for extended periods of time. Here, we introduce a versatile and affordable incubation system, addressing the limitations of traditional incubation systems. Conventionally, stationary cell incubators maintain constant temperature and gas levels for in vitro cell culturing. Combining such incubators with additional lab equipment proves challenging. The presented platform offers modularity and adaptability, enabling customization to diverse experimental needs. The system includes a main unit with a user-friendly interface as well as an interchangeable incubation chamber. We present two incubation chambers targeting two completely different use cases. The first chamber, named “inkugo” facilitates the transportation of cells for up to two hours without external power and for more than a day without an external CO source. The second chamber termed “inkubox” was designed to enable continuous electrophysiological recordings. Recordings from up to four neural cultures growing on high-density microelectrode arrays can be performed in parallel. The system’s unique feature lies in its separability of control and incubation components, allowing one control unit to manage various custom chambers. The design’s simplicity and the use of widely accessible components make the here proposed incubation system replicable for any laboratory. This platform fosters collaboration and experimentation in both decentralized and traditional laboratory settings, making it an invaluable addition to any cell culturing pipeline.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.