Anjan Kumar , Pawan Sharma , Amit Ved , Junainah Abd Hamid , Adil Ismael Mohammed , Ashish Singh , Vikas Kaushik , Leeth hassen jaseem
{"title":"效率超过 24% 的优质稳定 α-FAPbI3 包晶太阳能电池","authors":"Anjan Kumar , Pawan Sharma , Amit Ved , Junainah Abd Hamid , Adil Ismael Mohammed , Ashish Singh , Vikas Kaushik , Leeth hassen jaseem","doi":"10.1016/j.orgel.2024.107143","DOIUrl":null,"url":null,"abstract":"<div><p>-Fabrication of a stabilized black phase of formamidinium triiodide perovskite film is a critical issue to warrant efficient perovskite solar cells with considerable intrinsic and external stability. To address this obstacle, the study focuses on assembling α-FAPbI<sub>3</sub> perovskite solar cells. To realize a stabilized α-FAPbI<sub>3</sub>, a δ-FAPbI<sub>3</sub> film was annealed at 150 <span><math><mrow><mo>°C</mo></mrow></math></span> at ambient air with a humidity level of 25 % to convert α-FAPbI<sub>3</sub>. Then, this <span><math><mrow><mi>δ</mi><mo>→</mo><mi>α</mi></mrow></math></span> FAPbI<sub>3</sub> was crushed, and some of it was added to a fresh FAPbI<sub>3</sub> perovskite precursor to fabricate desirable α-FAPbI<sub>3</sub> layers. The cost-effective method, along with the stabilization of α-FAPbI<sub>3</sub>, showed a high ability to promote charge transfer and suppress trap transitions in the perovskite layer. The engineered perovskite solar cells recorded a considerable filling factor of 82.89 % with a champion efficiency of 24.16 %, higher than the recorded efficiency of 21.25 %. In addition, the robust stability enables the FAPbI<sub>3</sub> solar cells to work steadily for more than 1200 h under simulated sunlight irradiance with just an 8 % loss in their performance.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107143"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior stabilized α-FAPbI3 perovskite solar cells with efficiency exceeding 24 %\",\"authors\":\"Anjan Kumar , Pawan Sharma , Amit Ved , Junainah Abd Hamid , Adil Ismael Mohammed , Ashish Singh , Vikas Kaushik , Leeth hassen jaseem\",\"doi\":\"10.1016/j.orgel.2024.107143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>-Fabrication of a stabilized black phase of formamidinium triiodide perovskite film is a critical issue to warrant efficient perovskite solar cells with considerable intrinsic and external stability. To address this obstacle, the study focuses on assembling α-FAPbI<sub>3</sub> perovskite solar cells. To realize a stabilized α-FAPbI<sub>3</sub>, a δ-FAPbI<sub>3</sub> film was annealed at 150 <span><math><mrow><mo>°C</mo></mrow></math></span> at ambient air with a humidity level of 25 % to convert α-FAPbI<sub>3</sub>. Then, this <span><math><mrow><mi>δ</mi><mo>→</mo><mi>α</mi></mrow></math></span> FAPbI<sub>3</sub> was crushed, and some of it was added to a fresh FAPbI<sub>3</sub> perovskite precursor to fabricate desirable α-FAPbI<sub>3</sub> layers. The cost-effective method, along with the stabilization of α-FAPbI<sub>3</sub>, showed a high ability to promote charge transfer and suppress trap transitions in the perovskite layer. The engineered perovskite solar cells recorded a considerable filling factor of 82.89 % with a champion efficiency of 24.16 %, higher than the recorded efficiency of 21.25 %. In addition, the robust stability enables the FAPbI<sub>3</sub> solar cells to work steadily for more than 1200 h under simulated sunlight irradiance with just an 8 % loss in their performance.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"135 \",\"pages\":\"Article 107143\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156611992400154X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156611992400154X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Superior stabilized α-FAPbI3 perovskite solar cells with efficiency exceeding 24 %
-Fabrication of a stabilized black phase of formamidinium triiodide perovskite film is a critical issue to warrant efficient perovskite solar cells with considerable intrinsic and external stability. To address this obstacle, the study focuses on assembling α-FAPbI3 perovskite solar cells. To realize a stabilized α-FAPbI3, a δ-FAPbI3 film was annealed at 150 at ambient air with a humidity level of 25 % to convert α-FAPbI3. Then, this FAPbI3 was crushed, and some of it was added to a fresh FAPbI3 perovskite precursor to fabricate desirable α-FAPbI3 layers. The cost-effective method, along with the stabilization of α-FAPbI3, showed a high ability to promote charge transfer and suppress trap transitions in the perovskite layer. The engineered perovskite solar cells recorded a considerable filling factor of 82.89 % with a champion efficiency of 24.16 %, higher than the recorded efficiency of 21.25 %. In addition, the robust stability enables the FAPbI3 solar cells to work steadily for more than 1200 h under simulated sunlight irradiance with just an 8 % loss in their performance.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.