Mile Gao , Shaun McAnally , Hui Jin , Paul L. Burn , Almantas Pivrikas , Paul E. Shaw
{"title":"利用光-MIS-CELIV 测定有机光伏薄膜中的自由载流子生成效率","authors":"Mile Gao , Shaun McAnally , Hui Jin , Paul L. Burn , Almantas Pivrikas , Paul E. Shaw","doi":"10.1016/j.orgel.2024.107137","DOIUrl":null,"url":null,"abstract":"<div><p>Solution processed organic photovoltaic (OPV) devices are promising for low-embedded energy and large-scale renewable energy production. The efficiency of charge carrier generation is a critical factor influencing the performance of photovoltaic devices. However, quantifying charge carrier generation can be challenging, with the results from experimental methods not always being easily correlated with solar cell performance. In this paper, we describe how photoinduced metal-insulating-semiconductor charge-extraction-by-linearly-increasing-voltage (photo-MIS-CELIV) can be used to determine the free charge carrier generation efficiency (FCGE) in OPV films. One of the benefits of this approach is that the FCGE can be measured alongside the charge mobility to provide a holistic picture of the fate of charges, from generation to extraction. We demonstrate this method through quantifying the FCGE of bulk heterojunctions of PCE10:ITIC-4F, D18:Y6 and PPDT2FBT:PC<sub>71</sub>BM, obtaining values of 47.4 ± 1.6 %, 75.0 ± 2.5 % and 70.6 ± 4.6 %, respectively. The measured FCGEs for these blends were consistent with the device-based external quantum efficiencies (EQEs) at the excitation wavelength used. The use of photo-MIS-CELIV for quantifying the FCGE increases its utility beyond simple charge mobility measurements and provides an extra method to enable optimisation of OPV device performance.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107137"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566119924001484/pdfft?md5=810828eb1a8aa4dd7d5bfc46a8deb41c&pid=1-s2.0-S1566119924001484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Free carrier generation efficiency in organic photovoltaic films determined using photo-MIS-CELIV\",\"authors\":\"Mile Gao , Shaun McAnally , Hui Jin , Paul L. Burn , Almantas Pivrikas , Paul E. Shaw\",\"doi\":\"10.1016/j.orgel.2024.107137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solution processed organic photovoltaic (OPV) devices are promising for low-embedded energy and large-scale renewable energy production. The efficiency of charge carrier generation is a critical factor influencing the performance of photovoltaic devices. However, quantifying charge carrier generation can be challenging, with the results from experimental methods not always being easily correlated with solar cell performance. In this paper, we describe how photoinduced metal-insulating-semiconductor charge-extraction-by-linearly-increasing-voltage (photo-MIS-CELIV) can be used to determine the free charge carrier generation efficiency (FCGE) in OPV films. One of the benefits of this approach is that the FCGE can be measured alongside the charge mobility to provide a holistic picture of the fate of charges, from generation to extraction. We demonstrate this method through quantifying the FCGE of bulk heterojunctions of PCE10:ITIC-4F, D18:Y6 and PPDT2FBT:PC<sub>71</sub>BM, obtaining values of 47.4 ± 1.6 %, 75.0 ± 2.5 % and 70.6 ± 4.6 %, respectively. The measured FCGEs for these blends were consistent with the device-based external quantum efficiencies (EQEs) at the excitation wavelength used. The use of photo-MIS-CELIV for quantifying the FCGE increases its utility beyond simple charge mobility measurements and provides an extra method to enable optimisation of OPV device performance.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"135 \",\"pages\":\"Article 107137\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001484/pdfft?md5=810828eb1a8aa4dd7d5bfc46a8deb41c&pid=1-s2.0-S1566119924001484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001484\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001484","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Free carrier generation efficiency in organic photovoltaic films determined using photo-MIS-CELIV
Solution processed organic photovoltaic (OPV) devices are promising for low-embedded energy and large-scale renewable energy production. The efficiency of charge carrier generation is a critical factor influencing the performance of photovoltaic devices. However, quantifying charge carrier generation can be challenging, with the results from experimental methods not always being easily correlated with solar cell performance. In this paper, we describe how photoinduced metal-insulating-semiconductor charge-extraction-by-linearly-increasing-voltage (photo-MIS-CELIV) can be used to determine the free charge carrier generation efficiency (FCGE) in OPV films. One of the benefits of this approach is that the FCGE can be measured alongside the charge mobility to provide a holistic picture of the fate of charges, from generation to extraction. We demonstrate this method through quantifying the FCGE of bulk heterojunctions of PCE10:ITIC-4F, D18:Y6 and PPDT2FBT:PC71BM, obtaining values of 47.4 ± 1.6 %, 75.0 ± 2.5 % and 70.6 ± 4.6 %, respectively. The measured FCGEs for these blends were consistent with the device-based external quantum efficiencies (EQEs) at the excitation wavelength used. The use of photo-MIS-CELIV for quantifying the FCGE increases its utility beyond simple charge mobility measurements and provides an extra method to enable optimisation of OPV device performance.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.