强度 t ≥ 3 的非对称正交阵列的新结果

IF 0.7 3区 数学 Q2 MATHEMATICS
Xiaodong Niu , Guangzhou Chen , Qiang Gao , Shanqi Pang
{"title":"强度 t ≥ 3 的非对称正交阵列的新结果","authors":"Xiaodong Niu ,&nbsp;Guangzhou Chen ,&nbsp;Qiang Gao ,&nbsp;Shanqi Pang","doi":"10.1016/j.disc.2024.114264","DOIUrl":null,"url":null,"abstract":"<div><p>The orthogonal array holds significant importance as a research topic within the realms of combinatorial design theory and experimental design theory, with widespread applications in statistics, computer science, coding theory and cryptography. This paper presents three constructions for asymmetric orthogonal arrays including juxtaposition, generator matrices over Galois fields and mixed difference matrices. Subsequently, many new infinite families of asymmetric orthogonal arrays with strength <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> are obtained. Furthermore, some new infinite families of large sets of orthogonal arrays with mixed levels are also obtained.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114264"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on asymmetric orthogonal arrays with strength t ≥ 3\",\"authors\":\"Xiaodong Niu ,&nbsp;Guangzhou Chen ,&nbsp;Qiang Gao ,&nbsp;Shanqi Pang\",\"doi\":\"10.1016/j.disc.2024.114264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The orthogonal array holds significant importance as a research topic within the realms of combinatorial design theory and experimental design theory, with widespread applications in statistics, computer science, coding theory and cryptography. This paper presents three constructions for asymmetric orthogonal arrays including juxtaposition, generator matrices over Galois fields and mixed difference matrices. Subsequently, many new infinite families of asymmetric orthogonal arrays with strength <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> are obtained. Furthermore, some new infinite families of large sets of orthogonal arrays with mixed levels are also obtained.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114264\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003959\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003959","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

正交阵列作为组合设计理论和实验设计理论领域的一个重要研究课题,在统计学、计算机科学、编码理论和密码学中有着广泛的应用。本文介绍了非对称正交阵列的三种构造,包括并列、伽罗瓦域上的生成矩阵和混合差分矩阵。随后,得到了强度 t≥3 的许多新的非对称正交阵列无穷族。此外,还得到了一些新的具有混合水平的大集正交阵列无穷族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New results on asymmetric orthogonal arrays with strength t ≥ 3

The orthogonal array holds significant importance as a research topic within the realms of combinatorial design theory and experimental design theory, with widespread applications in statistics, computer science, coding theory and cryptography. This paper presents three constructions for asymmetric orthogonal arrays including juxtaposition, generator matrices over Galois fields and mixed difference matrices. Subsequently, many new infinite families of asymmetric orthogonal arrays with strength t3 are obtained. Furthermore, some new infinite families of large sets of orthogonal arrays with mixed levels are also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信