{"title":"通过 PI3K/Akt/mTOR 通路促进自噬,敲除 STC2 可抑制肝细胞癌细胞增殖和糖酵解","authors":"","doi":"10.1016/j.abb.2024.110149","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC.</p></div><div><h3>Methods</h3><p>STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression <em>in vivo</em> was evaluated by the tumor formation experiment.</p></div><div><h3>Results</h3><p>Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression.</p></div><div><h3>Conclusions</h3><p>STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.</p></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STC2 knockdown inhibits cell proliferation and glycolysis in hepatocellular carcinoma through promoting autophagy by PI3K/Akt/mTOR pathway\",\"authors\":\"\",\"doi\":\"10.1016/j.abb.2024.110149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC.</p></div><div><h3>Methods</h3><p>STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression <em>in vivo</em> was evaluated by the tumor formation experiment.</p></div><div><h3>Results</h3><p>Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression.</p></div><div><h3>Conclusions</h3><p>STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.</p></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124002716\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124002716","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
STC2 knockdown inhibits cell proliferation and glycolysis in hepatocellular carcinoma through promoting autophagy by PI3K/Akt/mTOR pathway
Background
The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC.
Methods
STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression in vivo was evaluated by the tumor formation experiment.
Results
Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression.
Conclusions
STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.