Zhaoliang Sheng , Binrong Zhu , Jingming Cai , Jinsheng Han , Yamei Zhang , Jinlong Pan
{"title":"废玻璃粉对 3D 打印土工聚合物混凝土可打印性和机械性能的影响","authors":"Zhaoliang Sheng , Binrong Zhu , Jingming Cai , Jinsheng Han , Yamei Zhang , Jinlong Pan","doi":"10.1016/j.dibe.2024.100541","DOIUrl":null,"url":null,"abstract":"<div><p>Geopolymers represent a promising solution for reducing carbon emissions in 3D printing concrete (3DPC). This study explores the utilization of waste glass powder (WGP) as a novel precursor material to evaluate its influence on the printability and hardened mechanical properties of 3D printing geopolymer concrete based on slag and fly ash. Experimental results indicate that WGP content below 10% accelerates hydration and enhances buildability, whereas content exceeding 10% slows hydration but improves extrudability. Mechanical tests on cured specimens demonstrate a notable increase in compressive and flexural strength with increasing WGP content from 0% to 20%. Microstructural and chemical analyses of the 20% WGP variant reveal a denser morphology and an optimized Si/Al ratio.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100541"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002229/pdfft?md5=ec96c0b4f526a9cfe840e9288da3791e&pid=1-s2.0-S2666165924002229-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of waste glass powder on printability and mechanical properties of 3D printing geopolymer concrete\",\"authors\":\"Zhaoliang Sheng , Binrong Zhu , Jingming Cai , Jinsheng Han , Yamei Zhang , Jinlong Pan\",\"doi\":\"10.1016/j.dibe.2024.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geopolymers represent a promising solution for reducing carbon emissions in 3D printing concrete (3DPC). This study explores the utilization of waste glass powder (WGP) as a novel precursor material to evaluate its influence on the printability and hardened mechanical properties of 3D printing geopolymer concrete based on slag and fly ash. Experimental results indicate that WGP content below 10% accelerates hydration and enhances buildability, whereas content exceeding 10% slows hydration but improves extrudability. Mechanical tests on cured specimens demonstrate a notable increase in compressive and flexural strength with increasing WGP content from 0% to 20%. Microstructural and chemical analyses of the 20% WGP variant reveal a denser morphology and an optimized Si/Al ratio.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100541\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002229/pdfft?md5=ec96c0b4f526a9cfe840e9288da3791e&pid=1-s2.0-S2666165924002229-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002229\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002229","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Influence of waste glass powder on printability and mechanical properties of 3D printing geopolymer concrete
Geopolymers represent a promising solution for reducing carbon emissions in 3D printing concrete (3DPC). This study explores the utilization of waste glass powder (WGP) as a novel precursor material to evaluate its influence on the printability and hardened mechanical properties of 3D printing geopolymer concrete based on slag and fly ash. Experimental results indicate that WGP content below 10% accelerates hydration and enhances buildability, whereas content exceeding 10% slows hydration but improves extrudability. Mechanical tests on cured specimens demonstrate a notable increase in compressive and flexural strength with increasing WGP content from 0% to 20%. Microstructural and chemical analyses of the 20% WGP variant reveal a denser morphology and an optimized Si/Al ratio.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.