Renping Cao , Minhong Wu , Bang Lan , Tengyu Huang , Jingheng Nie , Fangrui Cheng , Xiaohu Luo , Jing Wang
{"title":"掺杂 Sm3+ 的 CaTbAl3O7 荧光粉特性研究","authors":"Renping Cao , Minhong Wu , Bang Lan , Tengyu Huang , Jingheng Nie , Fangrui Cheng , Xiaohu Luo , Jing Wang","doi":"10.1016/j.jlumin.2024.120898","DOIUrl":null,"url":null,"abstract":"<div><p>New single phase and adjustable emission phosphors have attracted a lot of attention because of the good luminous properties. In this work, Sm<sup>3+</sup> doped CaTbAl<sub>3</sub>O<sub>7</sub> phosphors are prepared in air by solid-state method. The crystal structure, concentration dependent spectra, lifetimes, and luminescence properties are investigated. Because of the 4<em>f</em><sup>8</sup> → 4<em>f</em><sup>7</sup>5<em>d</em><sup>1</sup> and 4<em>f</em> → 4<em>f</em> transitions of Tb<sup>3+</sup> ion, host (CaTbAl<sub>3</sub>O<sub>7</sub>) shows an excitation spectrum in the range of 220–520 nm under monitored at 544 nm and emits yellow-green light under excitation 248, 284, and 368 nm due to the <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub><em>J</em></sub> (<em>J</em> = 0, 1, 2, 3, 4, 5, and 6) transitions of Tb<sup>3+</sup> ion. CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> under monitored 598 nm contains the excitation spectral peaks of both CaTbAl<sub>3</sub>O<sub>7</sub> and Sm<sup>3+</sup> ion. With excitation at 368 nm, CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> glows orange-red light, its PL spectrum has both host (CaTbAl<sub>3</sub>O<sub>7</sub>) and Sm<sup>3+</sup> ion contributing, and the chromaticity coordinates are about (0.5499, 0.4351). Under excitation 402 nm, the red-orange emission of CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> is only the contribution of Sm<sup>3+</sup> ion and the chromaticity coordinates are about (0.5823, 0.4168). The energy transfer process from Tb<sup>3+</sup> in host (CaTbAl<sub>3</sub>O<sub>7</sub>) to Sm<sup>3+</sup> ions can be confirmed via the spectral properties. We explain the luminous mechanism of CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> by the energy level diagrams of Tb<sup>3+</sup> and Sm<sup>3+</sup>.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120898"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the properties of Sm3+-Doped CaTbAl3O7 phosphors\",\"authors\":\"Renping Cao , Minhong Wu , Bang Lan , Tengyu Huang , Jingheng Nie , Fangrui Cheng , Xiaohu Luo , Jing Wang\",\"doi\":\"10.1016/j.jlumin.2024.120898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New single phase and adjustable emission phosphors have attracted a lot of attention because of the good luminous properties. In this work, Sm<sup>3+</sup> doped CaTbAl<sub>3</sub>O<sub>7</sub> phosphors are prepared in air by solid-state method. The crystal structure, concentration dependent spectra, lifetimes, and luminescence properties are investigated. Because of the 4<em>f</em><sup>8</sup> → 4<em>f</em><sup>7</sup>5<em>d</em><sup>1</sup> and 4<em>f</em> → 4<em>f</em> transitions of Tb<sup>3+</sup> ion, host (CaTbAl<sub>3</sub>O<sub>7</sub>) shows an excitation spectrum in the range of 220–520 nm under monitored at 544 nm and emits yellow-green light under excitation 248, 284, and 368 nm due to the <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub><em>J</em></sub> (<em>J</em> = 0, 1, 2, 3, 4, 5, and 6) transitions of Tb<sup>3+</sup> ion. CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> under monitored 598 nm contains the excitation spectral peaks of both CaTbAl<sub>3</sub>O<sub>7</sub> and Sm<sup>3+</sup> ion. With excitation at 368 nm, CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> glows orange-red light, its PL spectrum has both host (CaTbAl<sub>3</sub>O<sub>7</sub>) and Sm<sup>3+</sup> ion contributing, and the chromaticity coordinates are about (0.5499, 0.4351). Under excitation 402 nm, the red-orange emission of CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> is only the contribution of Sm<sup>3+</sup> ion and the chromaticity coordinates are about (0.5823, 0.4168). The energy transfer process from Tb<sup>3+</sup> in host (CaTbAl<sub>3</sub>O<sub>7</sub>) to Sm<sup>3+</sup> ions can be confirmed via the spectral properties. We explain the luminous mechanism of CaTbAl<sub>3</sub>O<sub>7</sub>:Sm<sup>3+</sup> by the energy level diagrams of Tb<sup>3+</sup> and Sm<sup>3+</sup>.</p></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"277 \",\"pages\":\"Article 120898\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324004629\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004629","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Study on the properties of Sm3+-Doped CaTbAl3O7 phosphors
New single phase and adjustable emission phosphors have attracted a lot of attention because of the good luminous properties. In this work, Sm3+ doped CaTbAl3O7 phosphors are prepared in air by solid-state method. The crystal structure, concentration dependent spectra, lifetimes, and luminescence properties are investigated. Because of the 4f8 → 4f75d1 and 4f → 4f transitions of Tb3+ ion, host (CaTbAl3O7) shows an excitation spectrum in the range of 220–520 nm under monitored at 544 nm and emits yellow-green light under excitation 248, 284, and 368 nm due to the 5D4 → 7FJ (J = 0, 1, 2, 3, 4, 5, and 6) transitions of Tb3+ ion. CaTbAl3O7:Sm3+ under monitored 598 nm contains the excitation spectral peaks of both CaTbAl3O7 and Sm3+ ion. With excitation at 368 nm, CaTbAl3O7:Sm3+ glows orange-red light, its PL spectrum has both host (CaTbAl3O7) and Sm3+ ion contributing, and the chromaticity coordinates are about (0.5499, 0.4351). Under excitation 402 nm, the red-orange emission of CaTbAl3O7:Sm3+ is only the contribution of Sm3+ ion and the chromaticity coordinates are about (0.5823, 0.4168). The energy transfer process from Tb3+ in host (CaTbAl3O7) to Sm3+ ions can be confirmed via the spectral properties. We explain the luminous mechanism of CaTbAl3O7:Sm3+ by the energy level diagrams of Tb3+ and Sm3+.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.